Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 1913-1922.doi: 10.13229/j.cnki.jdxbgxb.20221236

Previous Articles    

Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones

Shu-hong MA(),Guo-mei LIAO,Yan HUANG,Jun-jie ZHANG   

  1. College of Transportation Engineering,Chang′an University,Xi′an 710064,China
  • Received:2022-09-22 Online:2024-07-01 Published:2024-08-05

Abstract:

This paper using the Geographically Weighted Regression model to fit the relationship between built environment variables and subway passenger flow, and analyzes the influence of significant variables on subway passenger flow. Using the passenger flow data of 63 stations of Xi'an Metro Line 1, 2 and 3 for 5 working days, and ArcGIS to match the passenger flow with the traffic analysis zones. On the basis of the traditional least squares regression model, constructed the GWR model. Considering the impact of GDP per capita, land use mixing degree, parking lot density, intersection density, subway entrance and exit density, etc. on the passenger flow of subway entrances and exits. The following conclusions can be obtained: The GWR model can depict the spatial non-stationarity and influence scale of the interaction between subway commuter passenger flow and built environment variables, and its results are better than the traditional least squares method. Meanwhile, we found that four variables-GDP per capita, land use mixing degree, intersection density, and subway entrance and exit density-have significant effects on subway passenger flow. The attraction of land-use mixing degree to subway commuter traffic is much greater than the density of subway entrances and exits, and more obvious in traffic analysis zones with low degree of land use development and balance.

Key words: urban traffic, built environment, commuting, subway passenger flow, geographically weighted regression model

CLC Number: 

  • U491

Fig.1

Total traffic flow during peak hours in traffic analysis zones on weekdays"

Table 1

Statistics on the number of various types of POIs in the traffic analysis zones"

土地分类交通小区编号POI类型
1234567891011
合计584001195861355389344216216928266
商服用地211749913634114885213415552
居住用地62052541111884713
公共设施服务用地3726094682450311412423
交通设施用地21200302247101101101739401101
旅游用地01425999521110
其他用地2673273004913492505020077

Fig.2

Traffic analysis zones POI core density distribution"

Table 2

Variables and descriptive statistics"

变量类型变量名称变量描述均值标准差
因变量高峰客流量早晚高峰交通小区地铁通勤总客流量/人63485732
社会经济属性常住人口研究单元常住人口数/人1950.003632.50
人口密度研究单元每平方公里的城市居民数/(人·km-219.6019.00
人均GDP研究区域人均生产总值/(元·人-1125 000.91108 484.58
土地利用属性土地利用混合度研究单元内平均土地利用混合度1.180.20
公共服务密度研究单元内科教文化、医疗等的密度/(个·km-287.3694.79
商服密度研究单元内餐饮、购物、住宿等的密度/(个·km-2145.19168.33
停车场密度研究单元内停车场密度/(个·km-252.0048.81
道路连通性及 基础设施属性交叉口密度研究单元内交叉口数量与土地面积比/(个·km-221.0628.46
公交车站点密度研究单元内公交站点密度/(个·km-28.8211.09
地铁出入口密度地铁站点出入口总数与交通小区面积之比/(个·km-21.180.20

Table 3

Pearson correlation coefficient analysis between independent variables"

常住

人口

人口

密度

人均

GDP

土地利用

混合度

公共服务

密度

商服

密度

停车场

密度

交叉口

密度

公交车站

密度

地铁出入

口密度

常住人口1-0.334**0.0190.175*-0.309**-.290**-0.347**-.268**-0.124-0.247**
人口密度10.384**0.1090.659**0.706**0.838**0.571**0.0990.317**
人均GDP1-0.250**0.388**0.498**0.371**0.349**-0.012-0.009
土地利用混合度10.002-.189*0.0240.0490.007-0.069
公共服务密度10.703**0.708**0.666**0.1410.431**
商服密度10.715**0.616**0.204*0.484**
停车场密度10.654**0.258**0.291**
交叉口密度10.308**0.313**
公交车站密度10.111
地铁出入口密度1

Table 4

Moran's I test results"

变量常住人口人口密度人均GDP土地利用混合度公共服务密度交叉口密度公交站点密度地铁出入口密度
Moran’s I0.53930.43630.25540.52890.64960.62460.57770.3004
EI-0.0084-0.0084-0.0084-0.0084-0.0084-0.0084-0.0084-0.0084
Z7.83115.52973.13337.90139.12668.12057.63834.5737
P-value0.00200.00200.00200.00200.00200.00200.00200.0020

Table 5

Least squares regression results for traffic analysis zones"

变量系数标准差t统计量概率[bVIF
截距-3747.8563043.245-1.2320.220
常住人口0.1660.1341.2360.2191.322
人口密度-23.85132.801-0.7270.4692.164
人均GDP0.0300.0056.0020.000**1.605
土地利用混合度4795.4672430.2301.9730.050*1.278
公共服务密度2.6927.1490.3770.7072.560
交叉口密度-46.44921.786-2.1320.035*2.143
公交站点密度-7.76760.965-0.1270.8991.136
地铁出入口密度186.95144.2254.2270.000**1.342
Adjusted R20.285
AICc2628

Table 6

Least squares regression results of significant variables for traffic analysis zones"

变量系数标准差t统计量概率[bVIF
截距-3927.9302910.100-1.3490.180
人均GDP0.0300.0046.8560.000**1.275
土地利用混合度5159.3522254.6562.2880.024*1.111
交叉口密度-55.36217.088-3.2400.002**1.331
地铁出入口密度177.59240.7244.3610.000**1.149
Adjusted R20.292
AICc2622

Table 7

Traffic analysis zones' subway commuter passenger flow GWR results"

解释变量平均值最小值中位值最大值标准差
人均GDP0.0320.0180.0320.0360.003
土地利用混合度5064.980302.4325261.5898726.3271847.402
交叉口密度-48.431-100.066-38.870-17.23722.270
地铁出入口密度176.77542.512186.583268.30654.042
最优带宽93
Adjusted R20.354
AICc2617

Fig.3

Spatial distribution of GWR model coefficients"

1 中国城市规划设计研究院.2020年度全国主要城市通勤监测报告[R/OL]. [2021-04-18]. .
2 中国城市规划设计研究院. 2021年度全国主要城市通勤监测报告[R/OL]. [2022-04-20]. .
3 Wang J, Zhang N P, Peng H, et al. Spatiotemporal heterogeneity analysis of influence factor on urban rail transit station ridership[J]. Journal of Transportation Engineering, Part A: Systems, 2022, 148(2): No. 04021115.
4 Loo B P Y, Chen C, Chan E T H. Rail-based transit-oriented development: lessons from New York City and Hong Kong[J]. Landscape and Urban Planning, 2010, 97(3): 202-212.
5 王玉萍, 陈宽民, 杨富社, 等. 城市轨道交通客流预测结果的技术分析体系[J]. 长安大学学报: 自然科学版, 2011, 31(3): 72-80.
Wang Yu-ping, Chen Kuan-min, Yang Fu-she, et al. Analysis system of urban rail transit passenger flow forcast result[J].Journal of Chang'an University (Natural Science Edition), 2011, 31(3):72-80.
6 Kuby M, Barranda A, Upchurch C. Factors influencing light-rail station boardings in the United States[J]. Transportation Research Part A: Policy and Practice, 2004, 38(3): 223-247.
7 江世雄, 蔡灿煌, 林宇晨, 等. 天气因素对福州地铁客流的影响分析[J]. 交通运输系统工程与信息, 2021, 21(3): 268-274.
Jiang Shi-xiong, Cai Can-huang, Lin Yu-chen, et al. Analysis of weather´s influences on metro ridership in Fuzhou[J].Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 268-274.
8 Xin M W, Shalaby A, Feng S M, et al. Impacts of COVID-19 on urban rail transit ridership using the synthetic control method[J]. Transport Policy, 2021, 111: 1-16.
9 Cummings C, Mahmassani H. Does intercity rail station placement matter? Expansion of the node-place model to identify station location impacts on Amtrak ridership[J]. Journal of Transport Geography, 2022, 99: No.103278.
10 Najafabadi S, Hamidi A, Allahviranloo M, et al. Does demand for subway ridership in Manhattan depend on the rainfall events?[J]. Transport Policy, 2019, 74: 201-213.
11 Liu Y, Liu Z, Jia R. DeepPF: a deep learning based architecture for metro passenger flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 18-34.
12 Li S Y Liu D J, Huang G P, et al. Spatially varying impacts of built environment factors on rail transit ridership at station level: a case study in Guangzhou, China[J]. Journal of Transport Geography, 2020, 82: No.102631.
13 Lanza K, Oluyomi A, Durand C, et al. Transit environments for physical activity: relationship between micro-scale built environment features surrounding light rail stations and ridership in Houston, Texas[J]. Journal of Transport & Health, 2020,19: No. 100924.
14 高德辉, 许奇, 陈培文, 等. 城市轨道交通客流与精细尺度建成环境的空间特征分析[J]. 交通运输系统工程与信息, 2021, 21(6): 25-32.
Gao De-hui, Xu Qi, Chen Pei-wen, et al. Spatial characteristics of urban rail transit passenger flows and fine-scale built environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 25-32.
15 申犁帆, 王烨, 张纯, 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018, 73(12):2423-2439.
Shen Li-fan, Wang Ye, Zhang Chun, et al. Relationship between built environment of rational pedestrian catchment areas and URT commuting ridership: evidence from 44 URT stations of Bejing[J]. Acta Geographica Sinica, 2018, 73(12): 2423-2439.
16 .土地利用现状分类 [S].
17 Yan X, Zhou J, Sheng F, et al. Influences of built environment at residential and work location-s on commuting distance: evidence from Wuhan, China[J]. ISPRS International Journal of Geo-Information, 2022, 11(2): 124.
18 Yang H, Lu X, Cherry C, et al. Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted regression[J]. Transp Geogr,2017, 64: 184-194.
19 Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298.
20 Akaike H. A new look at the statistical mode-l identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
21 Brunsdon C, Fotheringham A S, Charlton M. Geographically weighted summary statistics-a framework for localised exploratory data analysis[J]. Computers, Environment and Urban Systems, 2002, 26(6):501-524.
[1] Zhi-hua XIONG,Dai-yue DONG,Chun-jiao DONG,Yan ZHENG,Chao XIE. Combined decision-choice behavior of spectators considering personal preferences [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 979-986.
[2] Jiao-rong WU,Qing-kai LIN,Yong-qi DENG. Identification method of potential public transportation lane demand based on bus line operation stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 692-699.
[3] Wen-hui ZHANG,Jing YI. Optimization of bus stop system considering capacity and queuing delays [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 146-154.
[4] Chao-ying YIN,Ying LU,Chun-fu SHAO,Jian-xiao MA,De-jie XU. Impacts of built environment on commuting mode choice considering spatial autocorrelation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1994-2000.
[5] Xian-yan KUANG,Zi-ru CHEN. Dynamic game comity behavior at pedestrians′ crossing on unsignal-controlled roads based on cellular automata [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 837-846.
[6] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[7] Chao-ying YIN,Chun-fu SHAO,Zhao-guo HUANG,Xiao-quan WANG,Sheng-you WANG. Investigating influences of multi⁃scale built environment on car ownership behavior based on gradient boosting decision trees [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 572-577.
[8] Chun-jiao DONG,Dai-yue DONG,Cheng-xiang ZHU-GE,Li ZHEN. Trip characteristics and decision⁃making behaviors modeling of electric bicycles riding [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2618-2625.
[9] Jing-xian WU,Hua-peng SHEN,Yin HAN,Min YANG. Residents' commuting time model under the nonlinear impact of urban built environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2568-2573.
[10] Shi-jun YANG,Yu-long PEI,Heng-yan PAN,Guo-zhu CHENG,Wen-hui ZHANG. Characteristics analysising and prediction of dwelling time of urban bus [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2031-2039.
[11] Chao-ying YIN,Chun-fu SHAO,Xiao-quan WANG,Zhi-hua XIONG. Influence of built environment on commuting mode choice considering spatial heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 543-548.
[12] Chao⁃ying YIN,Chun⁃fu SHAO,Xiao⁃quan WANG. Influence of urban built environment on car commuting considering parking availability [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 714-719.
[13] Lei CHEN,Jiang⁃feng WANG,Yuan⁃li GU,Xue⁃dong YAN. Multi⁃source traffic data fusion algorithm based onmind evolutionary algorithm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 705-713.
[14] YU De-xin,YANG Zhao-sheng,GAO Peng. Constrained K-shortest paths algorithm within |dynamic restricted searching area [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 172-0176.
[15] YANG Zhao-sheng, YU Yue, YANG Wei. Acquisition of travel time based on inductive coil detector and probe vehicle [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 168-0171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!