Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1176-1187.doi: 10.13229/j.cnki.jdxbgxb.20230762

Previous Articles     Next Articles

Adaptive energy management strategy for trams considering lithi-um battery SoC prediction under semi-independent right-of-way

Feng-yang GAO1(),Zhi-shan GAO1,Yu-ze YANG2,Ya-xin QIANG1,Hao XU1,Zhi-long SHI1,Hao-ran ZHANG3   

  1. 1.Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.CRRC Tangshan Co. ,Ltd. ,Tangshan 063035,China
    3.China Academy of Railway Sciences (Shenzhen) Research and Design Institute Co. ,Ltd. ,Shenzhen 518000,China
  • Received:2023-07-20 Online:2025-04-01 Published:2025-06-19

Abstract:

In order to improve the poor adaptability of the traditional equivalent consumption minimization strategy (ECMS), and to further enhance the fuel economy of hybrid energy storage systems, an adaptive energy management strategy considering the prediction of the state of charge (SoC) of Li-ion battery is proposed. Firstly, based on the domestic tram lines and traveling data, a Markov chain is used to construct the typical driving conditions of streetcars under semi-independent right-of-way. Secondly, the SoC of lithium battery is predicted by adaptive Kalman filtering method, the charging and discharging process of lithium battery is optimized, the reliability of lithium battery is enhanced, and the minimum equivalent energy consumption of hybrid energy storage system is taken as the optimization target, meanwhile, the equivalent factor of traditional ECMS is optimized by combining with particle swarm algorithm, so as to realize the reasonable and effective distribution of load power between fuel cells and lithium batteries. Finally, a comparative analysis is carried out in the typical working conditions of the constructed tram under semi-independent right-of-way. The results show that, compared with the fixed-threshold strategy, the proposed strategy reduces hydrogen consumption by 0.63 kg and fuel cell peak current by 57.2 A. Compared with the state machine strategy, the proposed strategy reduces hydrogen consumption by 1.21 kg and fuel cell peak current by 24.6 A, and the fluctuation ranges of bus voltage and Li-ion battery SoC are both improved.

Key words: hybrid energy storage system, construction of driving conditions, energy management, semi-independent right-of-way

CLC Number: 

  • U482.1

Fig.1

Intersection signaling system"

Fig.2

Proactive priority strategy"

Fig.3

Signal light control logic"

Table 1

Train operating characteristics parameters"

序号参数含义
1S/km行驶距离
2Vmax/(km·h-1最高速度
3V/(km·h-1运行速度
4Vavg/(km·h-1平均速度
5amax/(m·s-2最大加速度
6aavg/(m·s-2平均加速度
7Ta/s加速时间
8Tv/s匀速时间
9Td/s减速时间
10Pa/%加速比例
11Pv/%匀速比例
12Pd/%减速比例
13astd/(m·s-2加速度标准差

Table 2

Principal component contribution rate"

主成分名称贡献率/%
运行速度44.83
平均速度26.31
加速度标准差12.28
平均加速度4.81
最大加速度3.09
匀速时间2.61
加速时间2.14
减速时间1.78
匀速比例0.73
加速比例0.45
减速比例0.39
最高速度0.31
行驶距离0.26

Fig.4

Operation status division"

Fig.5

Transfer probability matrix for different operating states"

Fig.6

Comparison of parameter errors under different construction methods"

Fig.7

Hybrid energy storage system topology"

Fig.8

Fuel cell equivalent circuit model"

Fig.9

First-order RC model of supercapacitor"

Fig.10

Lithium battery equivalent circuit model"

Fig.11

Kalman filtering estimation of Li-ion battery SoC framework"

Fig.12

Lithium batterySoC comparison"

Fig.13

Algorithm error"

Table 3

Lithium battery discharge condition test procedure"

增量时间/s累计时间/s电流ΔSoC/%
558Ib-1.111
5100-0.111
5158Ib-2.222
5200-2.222
2040-1.5Ib-1.389
242-4Ib-1.167
8500-1.167

Table 4

Lithium battery charging condition test procedure"

增量时间/s累计时间/s电流ΔSoC/%
55-4Ib0.556
1520-1.5Ib1.181
42401.181
5298Ib0.069
1342-1.5Ib0.611
547-4Ib1.167
35001.167

Fig.14

Lithium battery discharge condition"

Fig.15

Lithium battery charging condition"

Fig.16

Particle swarm optimization process"

Fig.17

Equivalence factor MAP"

Fig.18

Adaptive equivalence factor ECMS energy management strategy"

Table 5

Tram parameter table"

参 数取 值
母线电压(直流)/V750
负载功率/kW280
续航里程/km>40
最高行驶速度/(km·h-160
燃料电池单体数量/个735
锂电池组串并联数144串2并
超级电容组串并联数12串3并

Fig.19

Comparison of demand power"

Fig.20

Fuel cell current under different control strategies"

Fig.21

Busbar voltage comparison under different strategies"

Fig.22

Comparison of lithium battery SoC under different strategies"

Fig.23

Comparison of hydrogen consumption under different strategies"

Table 6

Comparison of simulation results"

对比性能状态机策略固定阈值策略

本文

策略

母线电压波动范围/V18.212.311.1
燃料电池峰值电流/A186.7219.3162.1
锂电池SoC始末状态差值/%6.42.21.9
系统氢耗量/kg3.192.611.98
[1] 高锋阳, 强雅昕, 高智山, 等. 在线和离线控制相结合的燃料电池有轨电车能量管理策略[J]. 吉林大学学报: 工学版, 2024, 54(10): 3064-3076.
Gao Feng-yang, Qiang Ya-xin, Gao Zhi-shan, et al. Combined online and offline control for fuel cell tram energy management strategy[J]. Journal of Jilin University (Engineering and Technology Edition) 2024, 54(10): 3064-3076.
[2] Olatomiwa L, Mekhilef S, Ismail M S, et al. Energy management strategies in hybrid renewable energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 821-835.
[3] Alla J, Streit L, Peroutka Z, et al. Position based T-S fuzzy power management for tram withenergy storage system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 3061-3071.
[4] 刘炳姣, 石琴, 仇多洋, 等. 基于改进蚁群算法的行驶工况构建及精度分析[J]. 合肥工业大学学报:自然科学版, 2017, 40(10): 1297-1302.
Liu Bing-jiao, Shi Qin, Qiu Duo-yang, et al. Drivingcycle construction based on improved ant colony optimization algorithm and precision analysis[J]. Journal of Hefei University of Technology(Natural Science), 2017, 40(10): 1297-1302.
[5] Brady J, O'mahony M. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas[J]. Applied Energy, 2016, 177: 165-178.
[6] 林泓涛, 姜久春, 贾志东, 等. 权重系数自适应调整的混合储能系统多目标模型预测控制[J]. 中国电机工程学报, 2018, 38(18): 5538-5547.
Lin Hong-tao, Jiang Jiu-chun, Jia Zhi-dong, et al. Multi-objective model predictive control for hybrid energy storage system with adaptive adjustment of weight coefficients[J]. Proceedings of the CSEE, 2018, 38(18): 5538-5547.
[7] 高锋阳, 张国恒, 石岩, 等. 新型城轨电车混合动力系统能量管理策略[J]. 铁道学报, 2019, 41(4): 48-54.
Gao Feng-yang, Zhang Guo-heng, Shi Yan, et al. Energy management strategy of hybrid power system of new urban rail transit[J]. Railway Transaction, 2019, 41(4): 48-54.
[8] Xiong R, Cao J Y, Yu Q Q. Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]. Applied Energy, 2018, 211: 538-548.
[9] Bhattacharyy A K, Maitra B, Boltze M. Implementation of bus priority with queue jump lane and pre-signal at urban intersections with mixed traffic operations: lessons learned?[J]. Transportation Research Record, 2019, 2673(3): 646-657.
[10] 周洋帆, 贾顺平, 陈绍宽, 等. 有轨电车信号优先时长阈值优化模型[J]. 交通运输工程学报, 2016, 16(5): 151-158.
Zhou Yang-fan, Jia Shun-ping, Chen Shao-kuan, et al. Optimization model signal priority time threshold of tram[J]. Journal of Traffic and Transportation Engineering and Development, 2016, 16(5): 151-158.
[11] 王云鹏, 郭戈. 基于深度强化学习的有轨电车信号优先控制[J]. 自动化学报, 2019, 45(12): 2366-2377.
Wang Yun-peng, Guo Ge. Signal priority control for trams using deep reinforcement learning[J]. Acta Automatica Sinica, 2019, 45(12): 2366-2377.
[12] Sermpis D, Papadakos P, Fousekis K. Tram priority atsignal-controlled junctions[J]. Proceedings of the Institution of Civil Engineers Transport, 2012, 165(2):87-96.
[13] Xu Q, Zhang C, Xu Z, et al. A composite finite-time controller for decentralized power sharing and stabilization of hybrid fuel cell/supercapacitor system with constant power load[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 88-100.
[14] Bishop J D K, Axon C J, Mcculloch M D. A robust, data-driven methodology for real-world driving cycle development[J]. Transportation Research, part D: Transport and Environment, 2012, 17(5):389-397.
[15] 高锋阳, 高翾宇, 张浩然, 等. 全局与瞬时特性兼优的燃料电池有轨电车能量管理策略[J]. 电工技术学报, 2023(21):5923-5938.
Gao Feng-yang, Gao Xuan-yu, Zhang Hao-ran, et al. Management strategy for fuel cell trams with both global and transient characteristics[J]. Transactions of China Electrotechnical Society,2023(21):5923-5938.
[16] 周娟, 孙啸, 刘凯, 等. 联合扩展卡尔曼滤波的滑模观测器SoC估算算法研究[J]. 中国电机工程学报, 2021, 41(2): 692-703.
Zhou Juan, Sun Xiao, Liu Kai, et al. Research on the SoC estimation algorithm of combining sliding mode observer with extended Kalman filter[J]. Chinese Journal of Electrical Engineering, 2021, 41(2): 692-703.
[17] 张国瑞, 李奇, 韩莹, 等. 基于运行模式和动态混合度的燃料电池混合动力有轨电车等效氢耗最小化能量管理方法研究[J].中国电机工程学报, 2018, 38(23): 6905-6914, 7124.
Zhang Guo-rui, Li Qi, Han Ying, et al. Study on equivalent consumption minimization strategy based on operation mode and DDOH for fuel cell hybrid tramway [J]. Chinese Journal of Electrical Engineering, 2018, 38(23): 6905-6914, 7124.
[1] Yu-hai WANG,Xiao-zhi LI,Xing-kun LI. Predictive energy saving algorithm for hybrid electric truck under high-speed condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2121-2129.
[2] Jing-hua ZHAO,Yu-tong ZHANG,Pai CAO,Zhong-shu WANG,Xiao-ping LI,Ya-nan SUN,Fang-xi XIE. Optimal energy management on extended⁃range electric vehicle equipped with compressed natural gas engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 600-609.
[3] Feng-yang GAO,Ya-xin QIANG,Zhi-shan GAO,Hao XU,Zhi-long SHI. Energy management strategy for fuel cell trams combining online and offline control [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3064-3076.
[4] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[5] Yan SUN,Chang-gao XIA,Bi-feng YIN,Jiang-yi HAN,Hai-yu GAO,Jing LIU. Energy management strategy of fuel cell electric vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2130-2138.
[6] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[7] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[8] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
[9] Zhe WANG,Yi XIE,Peng-fei ZANG,Yao WANG. Energy management strategy of fuel cell bus based on Pontryagin′s minimum principle [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 36-43.
[10] XI Li-he,ZHANG Xin,SUN Chuan-yang,WANG Ze-xing,JIANG Tao. Adaptive energy management strategy for extended range electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1636-1644.
[11] ZHOU Fang, SONG Chuan-xue, LIANG Tian-wei, XIAO Feng. Parameter matching of on-board hybrid energy storage system using NSGA-II algorithm [J]. 吉林大学学报(工学版), 2017, 47(5): 1336-1343.
[12] XIA Chao-ying, DU Zhi-ming. Simulation analysis on energy optimization strategy for Toyota PRIUD hybrid electric vehicle [J]. 吉林大学学报(工学版), 2017, 47(2): 373-383.
[13] SONG Chuan-xue, ZHOU Fang, XIAO Feng. Energy management optimization of hybrid energy storage system (HESS) based on dynamic programming [J]. 吉林大学学报(工学版), 2017, 47(1): 8-14.
[14] QIN Da-tong, YANG Guan-long, HU Ming-hui, LIU Yong-gang, LIN Yu-pei. Energy management strategy of plug-in hybridelectric system based on driving intention [J]. 吉林大学学报(工学版), 2015, 45(6): 1743-1750.
[15] DONG Bing,TIAN Yan-tao,ZHOU Chang-jiu. Fuzzy logic-based optimal control method for energy management of pure electric vehicle [J]. 吉林大学学报(工学版), 2015, 45(2): 516-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .