Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2119-2129.doi: 10.13229/j.cnki.jdxbgxb20220016

Previous Articles    

Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise

Hai-lin KUI1(),Ze-zhao WANG2,Jia-zhen ZHANG3,Yang LIU2   

  1. 1.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
    2.College of Transportation,Jilin University,Changchun 130022,China
    3.College of Automotive Engineering,Jilin University,Changchun 130022,China
  • Received:2022-01-04 Online:2022-09-01 Published:2022-09-13

Abstract:

In order to improve the power performance and economy of fuel cell vehicles, a fuel cell vehicle based on AVL-CRUISE was modeled, and the energy management strategy of fuzzy control based on Simulink was established. Then, the fixed gear was optimized into a two-speed AMT gearbox based on Isight/Cruise co-simulation. Simulation results show that the established fuzzy control energy management strategy is effective. Compared with the rule-based energy management strategy, the economy is improved by 16.4% and 8.5% respectively under NEDC and WLTP conditions. Compared with the fuel cell vehicle without optimized transmission ratio based on fuzzy control, the fuel cell vehicle with optimized transmission ratio based on fuzzy control has improved economy by 1.1% and 2.8% respectively under NEDC and WLTP conditions.

Key words: vehicle engineering, fuel cell, energy management, parameter matching, transmission ratio optimization, fuzzy control

CLC Number: 

  • U461.8

Fig.1

Structure of fuel cell vehicle hybrid drive mode"

Table 1

Different power distribution"

指标补偿型混合型全功率型
动力性中等良好
成本中等
适用性良好中等

Table 2

Basic parameters of fuel cell vehicles"

结构参数数值
整备质量/kg1850
满载质量/kg2300
迎风面积/m22.2
空气阻力系数0.3
滚动阻力系数0.0137
轮胎滚动半径/m0.324
汽车旋转质量换算系数1.05
主减速器传动比6.0

Table 3

Performance design indicators of fuel cell vehicle"

性能指标数值
纯电动续驶里程/km30
满载车速≥30 km/h时的最大爬坡度/%20
0~100 km/h加速时间/s≤15
0~50 km/h加速时间/s≤6
最高车速/(km·h-1≥150

Table 4

Parameter matching of drive motorpeak torque and peak power"

性能指标数值电机需求参数数值

最大爬坡度/%

(满载车速=30 km/h)

18峰值扭矩/(N·m)259
20284
22309
起步加速度/(m·s-21.5峰值扭矩/(N·m)185
2.0242
2.5300
加速时间(0~100 km/h)/s14峰值功率/kW80
13.585
1390

Table 5

Power demand of battery under FCSdynamic response"

燃料电池功率变化率/(kW·s-1电池需求功率/kW燃料电池峰值功率响应时间/s
10808
16545
20304

Table 6

Main parameters of component of power system"

动力系统部件参数数值
质子交换膜燃料电池峰值功率/kW80
额定功率/kW50

三元聚合物锂离子

电池

最大放电电流/A66.7
输出电压/V408~501
最大输出功率/kW80
容量/(kW·h)8
额定电压/V450
永磁同步电机额定功率/kW50
峰值功率/kW80
峰值转矩/(N·m)300
最高转速/103 (r·min-110
基速/(r·min-12550

Fig.2

Forward simulation flow chart"

Fig.3

Simulation model of fuel cell vehicle"

Fig.4

Fuzzy controller calculation flow"

Table 7

Percentage of decay rate of fuel cell"

工作条件衰减率/%
启/停机33
低功率4.7
变载56.5
高功率5.8

Table 8

Fuzzy logic controller rule table"

需求功率SOCBMS
BMSBMSBMS
需求功率变化率VBMMMVSVSSVSVSVS
BMMBVSSSVSVSVS
MMBBVSSLSVSVSS
SMBVBSLSLSVSVSS

Fig.5

Flow chart of NSGA-Ⅱ algorithm"

Fig.6

Vehicle following diagram of WLTP cycle"

Table 9

Simulation comparison results"

参数功率跟随模糊控制
最高车速/(km·h-1165165
0~100 km/h的加速时间/s13.914.8
0~50 km/h的加速时间/s5.45.7
NEDC循环工况的氢耗/[kg·(100 km)-11.0450.893
WLTP循环工况的氢耗/[kg·(100 km)-11.1861.057

Fig.7

SOC change curves under two cycle conditions"

Fig.8

Output power curves of fuel cells under two cycle conditions"

Fig.9

Gearbox transmission ratio optimization process"

Table 10

Simulation results after optimization"

方法主减速比1挡传动比2挡传动比NEDC循环工况氢耗/[kg·(100 km)-1WLTP循环工况氢耗/[kg·(100 km)-1
功率跟随6.01.01.01.0451.186
模糊控制6.01.01.00.8931.057
传动比优化的功率跟随4.02.01.11.0221.174
传动比优化的模糊控制4.02.41.10.8831.027
1 Kendall M. Fuel cell development for New Energy Vehicles (NEVs) and clean air in China[J]. Progress in Natural Science: Materials International, 2018, 28(2): 113-120.
2 Liu F Q, Zhao F Q, Liu Z W, et al. The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: The China case[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22604-22621.
3 Fu J, You H, Zhao J W, et al. An energy control strategy of fuel cell hybrid unmanned surface vehicle based on pmp algorithm[C]∥2020 Chinese Automation Congress, Shanghai, China, 2020: 6260-6264.
4 金希计. 新能源汽车的技术原理和优缺点探究[J]. 时代汽车, 2020, 16(15): 80-81.
Jin Xi-ji. Research on the technical principles, advantages and disadvantages of new energy vehicle[J]. Auto Time, 2020, 16(15): 80-81.
5 Zhao H, Wang Y, Huang X, et al. Configuration analysis and parameter matching of fuel cell electric vehicle driving system[C]∥45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019: 6388-6393.
6 徐乐鹏. 某燃料电池重卡动力系统参数匹配与能量管理策略研究[D]. 太原: 太原理工大学机械与运载工程学院, 2020.
Xu Le-peng. Research on parameter matching and energy management strategy of a fuel cell heavy truck power system[D]. Taiyuan: College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, 2020.
7 郭斌, 秦孔建, 卢青春, 等. 燃料电池混合动力系统构型和控制方法研究[J]. 汽车科技, 2006, 33(3): 10-14.
Guo Bin, Qin Kong-jian, Lu Qing-chun, et al. Research on configuration and control method of fuel cell hybrid power system[J]. Auto Sci-tech, 2006, 33(3): 10-14.
8 宋昱, 韩恺, 李小龙, 等. 燃料电池汽车混合度与能量管理策略研究[J]. 交通科技与经济, 2019, 21(2): 40-46, 67.
Song Yu, Han Kai, Li Xiao-long, et al. A study of degree of hybridization and energy management strategies for fuel cell electric vehicle[J]. Technology and Economy in Areas of Communications, 2019, 21(2): 40-46, 67.
9 Ma S, Lin M, Lin T E, et al. Fuel cell-battery hybrid systems for mobility and off-grid applications: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 135: No. 110119.
10 宗贺辉. 氢燃料电池客车电电混合动力系统研究[D]. 郑州: 华北水利水电大学机械工程学院, 2020.
Zong He-hui. Research on electric-electric hybrid power system of hydrogen fuel cell bus[D]. Zhengzhou: School of Mechanical Engineering, North China University of Water Resources and Electric Power, 2020.
11 王骞, 李顶根, 苗华春. 基于模糊逻辑控制的燃料电池汽车能量管理控制策略研究[J]. 汽车工程, 2019, 41(12): 1347-1355.
Wang Qian, Li Ding-gen, Miao Hua-chun. Rasearch on energy management strategy of fuel cell vehicle based on fuzzy logic control[J]. Automotive Engineering, 2019, 41(12): 1347-1355.
12 张梦, 杨玉新, 罗羽, 等. 模糊逻辑应用的燃料电池汽车能量管理策略[J]. 电气自动化, 2020, 42(1): 50-53.
Zhang Meng, Yang Yu-xin, Luo Yu, et al. Fuel cell vehicle energy management strategy based on fuzzy logic[J]. Electrical Automation, 2020, 42(1): 50-53.
13 Lee H, Cha S W. Energy management strategy of fuel cell electric vehicles using model-based reinforcement learning with data-driven model update[J]. IEEE Access, 2021, 9: 59244-59254.
14 Inci M, Büyük M, Demir M H, et al. A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects[J]. Renewable and Sustainable Energy Reviews, 2021, 137: No.110648.
15 Zhan Y D, Guo Y G, Zhu J G, et al. Comprehensive influences measurement and analysis of power converter low frequency current ripple on PEM fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31352-31359.
16 Pei P C, Chen H C. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review[J]. Applied Energy, 2014, 125: 60-75.
17 王季方, 卢正鼎. 模糊控制中隶属度函数的确定方法[J]. 河南科学, 2000, 18(4): 348-351.
Wang Ji-fang, Lu Zheng-ding. Determination method of membership function in fuzzy control[J]. Henan Science, 2000, 18(4): 348-351.
18 鲁楠, 唐岚, 程洋, 等. 纯电动汽车传动系统参数匹配及优化[J]. 汽车实用技术, 2019, 43(8): 47-50.
Lu Nan, Tang Lan, Cheng Yang, et al. Parameters matching and optimization for power-train of electrical vehicle[J]. Automobile Applied Technology, 2019, 43(8): 47-50.
19 叶山顶. 电动汽车无离合器AMT换档控制策略研究[D]. 北京: 北京理工大学机械工程学院, 2016.
Ye Shan-ding. Study on the AMT shifting control strategy for electrical vehicle[D]. Beijing: School of Mechanical Engineering, Beijing Institute of Technology, 2016.
20 詹长书, 王清. 基于改进遗传算法电动汽车变速器参数设计与优化[J]. 重庆理工大学学报: 自然科学版, 2020, 34(2): 1-5.
Zhan Chang-shu, Wang Qing. Design and optimazation of transmission parameters of electric vehicle based on improved genetic algorithm[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(2): 1-5.
21 王南, 刘庆阳, 周莎莎, 等. 基于Isight平台NSGA-Ⅱ方法的3-PRS并联机构多目标优化[J]. 机械设计与制造, 2015, 52(12): 198-201.
Wang Nan, Liu Qing-yang, Zhou Sha-sha, et al. Multi-objective optimization of 3-PRS parallel mechanism based on NSGA-Ⅱ method of Isight platform[J]. Machinery Design and Manufacture, 2015, 52(12): 198-201.
[1] Ji-zong LIU,Xiao-ping WU,Wei-hua KONG. Parameter configuration of fuel cell hybrid system for tram based on fish swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2004-2013.
[2] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[3] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[4] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[5] Jing DU,Hong-hui ZHAO,Yu-peng WANG,Tian-wei DING,Kai WEI,Kai WANG,Ling-hai HAN. Purge strategy optimization and verification of PEM fuel cell engine based on AMESim simulation model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2069-2076.
[6] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[7] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[8] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[9] Zhen-ning LIU,Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU. Development and experimental of high⁃power proton exchange membrane fuel cell test system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2025-2033.
[10] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[11] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[12] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[13] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[14] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[15] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!