Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3626-3636.doi: 10.13229/j.cnki.jdxbgxb.20231030

Previous Articles     Next Articles

Image dehazing algorithm based on multiscale encoding decoding neural network

Yong WANG1(),Yu-xiao BIAN1,Xin-chao LI1,Chun-ming XU2,Gang PENG2,Ji-kui WANG2   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130012,China
    2.Changchun Shikai Science and Technology Industry Co. ,Ltd. ,Changchnu 130015,China
  • Received:2023-09-26 Online:2024-12-01 Published:2025-01-24

Abstract:

Aiming at the problems of missing details, dim color and reduced brightness in the images collected by the image acquisition system in the foggy scene, a multi-scale encoding decoding neural network (MSAOD) model was proposed based on the AOD theory for image dehazing. The proposed network model was divided into three modules. The first module is the preprocessing module, which divides the input image into two parts for preprocessing. The second module is the backbone module, which extracts the features of the output of the first part through the multi-scale encoder decoder. The third module is the post-processing module, which maps the feature map. The experimental results show that this method is superior to the mainstream deep learning and traditional methods in image dehazing effect, and the image after dehazing is optimized in detail, color, brightness and so on.

Key words: digital image processing, image dehazing, atmospheric scattering model, deep learning, multi-scale network

CLC Number: 

  • TP399

Fig.1

Atmospheric imaging process diagram"

Fig.2

Preprocessing structure diagram"

Fig.3

CAB module network structure diagram"

Fig.4

CALayer structure diagram"

Fig.5

Multi scale module"

Fig.6

Encoder–decoder"

Fig.7

Nonlinear mapping module"

Fig.8

Overall network diagram"

Fig.9

Image display of part of the dataset"

Fig.10

Experimental Result Graph"

Fig.11

Comparison of experimental results in detail"

Fig.12

Comparison of depth of field and detail restoration issues"

Fig.13

Comparison Chart of Deep Learning Methods"

Fig.14

SOTS dataset experimental results graph"

Table 1

Performance of various methods on the SOTS"

方法PSNRSSIM
FVR12.879 60.587 2
DCP13.230 00.703 3
AL18.819 50.862 7
ATM7.977 30.694 0
Dehazednet9.770 00.484 6
AOD-Net19.704 80.751 8
本文方法21.817 00.895 0

Fig.15

RTTS dataset experimental results graph"

Table 2

No reference evaluation average index"

评分指标FVRATMDCPALDehazednetAODMSAOD
Brenner0.822 80.310 10.582 50.863 10.613 20.529 10.874 1
Laplacian0.074 90.016 30.067 20.071 60.051 80.057 80.075 9
SMD0.035 30.020 40.032 60.047 30.034 30.027 90.049 6
SMD22.145 80.795 71.868 32.436 11.252 31.305 42.616 5
Variance4.841 02.972 97.416 78.239 15.364 36.758 38.207 3
Energy1.059 60.307 91.049 81.053 80.742 70.509 40.793 0
Vollath4.798 02.694 26.179 58.524 75.732 06.651 08.537 6
Entropy4.856 34.545 44.453 85.077 84.135 84.969 75.023 1

Fig.16

Results of ablation experiment"

Table 4

MSAOD module combination results"

评分指标1232+31+2+3本文
PSNR20.2866.09620.87920.28619.90822.585
Brenner0.6550.6780.6210.6320.9381.182
Laplacian0.0390.0410.0210.0360.0520.054
Energy0.8210.6120.8710.6860.8360.896
1 He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
2 Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image[C]∥2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan,2009: 2201-2208.
3 Sulami M, Glatzer I, Fattal R, et al. Automatic recovery of the atmospheric light in hazy images[C]∥2014 IEEE International Conference on Computational Photography (ICCP).Santa Clara, USA,2014: 1-11.
4 Cai B L, Xu X M, Jia K. An end-to-end system for single image haze removal[J].IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
5 Qin X, Wang Z L, Bai Y C, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]∥Proceedings of the AAAI Conference on Artificial Intelligence,New York,USA,2020: 11908-11915.
6 顼聪,陶永鹏,朱毅,等.基于图像块高位平面无损压缩的可逆信息隐藏方法[J].东北师大学报: 自然科学版, 2023, 55(3): 101-108.
Xu Cong, Tao Yong-peng, Zhu Yi. Reversible data hiding method based on image block high bit planes lossless compression[J]. Journal of Northeast Normal University(Natural Science Edition), 2023, 55(3): 101-108.
7 Liu X H, Ma Y R, Shi Z H, et al. Griddehazenet: Attention-based multi-scale network for image dehazing[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision,Seoul,Korean, 2019: 7314-7323.
8 刘雪,赵辰一,乔双,等. 基于SVD和残差图像的噪声强度估计方法及其在中子图像去噪中的应用[J].东北师大学报: 自然科学版, 2024, 56(3): 62-69.
Liu Xue, Zhao Chen-yi, Qiao Shuang,et al. Noise intensity estimation method based on SVD and residual images for neutron image denoising[J]. Journal of Northeast Normal University(Natural Science Edition), 2024, 56(3): 62-69.
9 周军,孔菁菁.多策略改进的麻雀搜索算法及其应用[J].东北师大学报: 自然科学版, 2024, 56(4): 81-88.
Zhou Jun, Kong Jing-jing. Multi-strategy improved sparrow search algorithm and its application[J]. Journal of Northeast Normal University(Natural Science Edition), 2024, 56(4): 81-88.
10 Shit S, Das D K, Ray D N, et al. An encoder‐decoder based CNN architecture using end to end dehaze and detection network for proper image visualization and detection[J]. Computer Animation and Virtual Worlds, 2023, 34(6): No.e2147.
11 Li B, Zhao J J, Fu H. DLT-Net: deep learning transmittance network for single image haze removal[J]. Signal, Image and Video Processing, 2020, 14(6): 1245-1253.
12 Zhang S D, He F Z, Ren W Q, et al. Joint learning of image detail and transmission map for single image dehazing[J]. The Visual Computer, 2020, 36(2): 305-316.
13 Wang A N, Wang W H, Liu J L, et al. AIPNet: Image-to-image single image dehazing with atmospheric illumination prior[J]. IEEE Transactions on Image Processing, 2018, 28(1): 381-393.
14 Roy S, Chaudhuri S S. SIVDSR-Dhaze: Single Image Dehazing with Very Deep Super Resolution Framework and Its Analysis[J].Scientific Visualization, 2022, 14(5): 16-44.
15 Wang C, Shen H Z, Fan F, et al. EAA-Net: a novel edge assisted attention network for single image dehazing[J]. Knowledge-Based Systems, 2021, 228: 107279.
16 Baskar H, Chakravarthy A S, Garg P, et al. NDENet: end-to-end nighttime dehazing and enhancement[J]. International Journal of Computer and Information Engineering, 2022, 16(11): 540-548.
17 Thomas R, Thampi L, Kamal S, et al. Dehazing underwater images using encoder decoder based generic model-agnostic convolutional neural network[C]∥2021 International Symposium on Ocean Technology (SYMPOL), Piscataulay,NJ, 2021: 1-4.
18 Zhao L Q, Zhang Y P, Cui Y. An attention encoder-decoder network based on generative adversarial network for remote sensing image dehazing[J]. IEEE Sensors Journal, 2022, 22(11): 10890-10900.
19 Kim G, Ha S, Kwon J. Adaptive patch based convolutional neural network for robust dehazing[C]∥2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 2845-2849.
20 Li C Y, Guo J C, Porikli F, et al. A cascaded convolutional neural network for single image dehazing[J]. IEEE Access, 2018, 6: 24877-24887.
21 Song Y F, Li J, Wang X G, et al. Single image dehazing using ranking convolutional neural network[J]. IEEE Transactions on Multimedia, 2017, 20(6): 1548-1560.
22 You Y, Lu C W, Wang W M, et al. Relative CNN-RNN: learning relative atmospheric visibility from images[J]. IEEE Transactions on Image Processing, 2018, 28(1): 45-55.
23 Chen D D, He M M, Fan Q N, et al. Gated context aggregation network for image dehazing and deraining[C]∥2019 IEEE Winter Conference on Applications of Computer Vision (WACV),Waikoloa Village,USA, 2019: 1375-1383.
24 Liu K, He L Y, Ma S P, et al. A sensor image dehazing algorithm based on feature learning[J]. Sensors, 2018, 18(8): 2606.
25 Xiao J S, Zhou J L, Lei J F, et al. Image hazing algorithm based on generative adversarial networks[J]. IEEE Access, 2019, 8: 15883-15894.
26 Li R D, Pan J S, Li Z H, et al. Single image dehazing via conditional generative adversarial network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,USA, 2018: 8202-8211
27 Liu W, Hou X X, Duan J, et al. End-to-end single image fog removal using enhanced cycle consistent adversarial networks[J]. IEEE Transactions on Image Processing, 2020, 29: 7819-7833.
28 Zhang X H.Research on Remote sensing image de-haze based on GAN[J].Journal of Signal Processing Systems, 2022, 94(3): 305-313.
29 Zheng Y T, Su J, Zhang S, et al. Dehaze-AGGAN: unpaired remote sensing image dehazing using enhanced attention-guide generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
30 Wang C H, Meng Z J, Xie R L, et al. A single image dehazing algorithm based on cycle-GAN[C]∥Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence,Shanghai, China, 2019: 247-251.
31 郭璠. 图像去雾方法和评价及其应用研究[D]. 长沙:中南大学信息科学与工程学院, 2012.
Guo Pan.Research on image defogging,effect assessment and application[D]. Changsha: School of Information Science and Engineering, Central South University,2012.
32 Narasimhan S G, Nayar S K. Removing weather effects from monochrome images[C]∥Proceedings of the 2001 IEEE Computer society Conference on Computer Vision and Pattern Recognition,Kauai, USA, 2001, 2: No.II.
[1] Lei ZHANG,Jing JIAO,Bo-xin LI,Yan-jie ZHOU. Large capacity semi structured data extraction algorithm combining machine learning and deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2631-2637.
[2] Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645.
[3] Bai-you QIAO,Tong WU,Lu YANG,You-wen JIANG. A text sentiment analysis method based on BiGRU and capsule network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2026-2037.
[4] Xin-gang GUO,Ying-chen HE,Chao CHENG. Noise-resistant multistep image super resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2063-2071.
[5] Li-ping ZHANG,Bin-yu LIU,Song LI,Zhong-xiao HAO. Trajectory k nearest neighbor query method based on sparse multi-head attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1756-1766.
[6] Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776.
[7] Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213.
[8] Xiong-fei LI,Zi-xuan SONG,Rui ZHU,Xiao-li ZHANG. Remote sensing change detection model based on multi⁃scale fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 516-523.
[9] Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332.
[10] Bin ZHAO,Cheng-dong WU,Xue-jiao ZHANG,Ruo-huai SUN,Yang JIANG. Target grasping network technology of robot manipulator based on attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3423-3432.
[11] Na CHE,Yi-ming ZHU,Jian ZHAO,Lei SUN,Li-juan SHI,Xian-wei ZENG. Connectionism based audio-visual speech recognition method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2984-2993.
[12] Yue-lin CHEN,Zhu-cheng GAO,Xiao-dong CAI. Long text semantic matching model based on BERT and dense composite network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 232-239.
[13] Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600.
[14] Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429.
[15] Qing-tian GENG,Zhi LIU,Qing-liang LI,Fan-hua YU,Xiao-ning LI. Prediction of soil moisture based on a deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2430-2436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .