Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (8): 2703-2710.doi: 10.13229/j.cnki.jdxbgxb.20231190

Previous Articles     Next Articles

Robot inverse kinematics solution based on center selection battle royale optimization algorithm

Yu-fei ZHANG1,2(),Li-min WANG3(),Jian-ping ZHAO2,Zhi-yao JIA3,Ming-yang LI4   

  1. 1.College of Computer Science and Technology,Changchun University,Changchun 130022,China
    2.School of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130022,China
    3.School of Information,Guangdong University of Finance and Economics,Guangzhou 510320,China
    4.School of Economics and Management,Changchun University of Technology,Changchun 130012,China
  • Received:2023-11-02 Online:2025-08-01 Published:2025-11-14
  • Contact: Li-min WANG E-mail:2019200107@mails.cust.edu.cn;20211016@gdufe.edu.cn

Abstract:

In order to solve the problems of high time complexity and insufficient global exploration ability of the battle royale optimization algorithm, this paper proposes an improved battle royale optimization algorithm based on chaos mapping, center selection and elite adaptive strategy. Compared with the test results of particle swarm optimization algorithm, whale optimization algorithm, and the battle royale optimization algorithm, the improved battle royale optimization algorithm significantly reduces time complexity and notably enhances convergence precision, speed, and stability. In the application of solving the inverse kinematics problem of robots, the accuracy and stability of the improved battle royale optimization algorithm are better than those of the traditional battle royale optimization algorithm, proving its practicality and potential for development in solving robot inverse kinematics problems.

Key words: computer application technology, battle royale optimization algorithm, center selection, elite adaptive strategy, inverse kinematics

CLC Number: 

  • TP301.6

Fig.1

Flowchart of TCABRO algorithm"

Table 1

Benchmark function"

函数类型函数名称最优值
单峰函数F1: Shifted and Rotated Bent Cigar Function100
多峰函数F6: Shifted and Rotated Expanded Scaffer's F6 Function600
混合函数F13: Hybrid Function 3(N = 3)1 300
F15: Hybrid Function 5(N = 4)1 500
复合函数F23: Composition Function 3(N = 4)2 300
F27: Composition Function 7(N = 6)2 700

Table 2

Other relevant parameters of the all algorithm"

算法参 数
PSO惯性权重w=0.8,学习因子c1=c2=2
WOA收敛因子a是从2到0的线性递减,螺旋形状的常数b= 1
BRO伤害阈值为3
M-BRO随机因子r1[0,1]r2[0,1],移动步长λdam,d[0,1]
TCABROλ=2w1=w2=1r1[0,1]r2[0,1],伤害阈值为3

Table 3

Comparison of the test results of each algorithm"

函数PSOWOABROM-BROTCABRO
平均值标准差平均值标准差平均值标准差平均值标准差平均值标准差
F11.34×10103.48×1095.09×1082.78×1082.17×10101.80×1094.76×1081.66×1084.98×1035.18×103
F65.83×1018.94×1007.50×1017.38×1007.10×1016.25×1005.78×1011.32×1013.96×1017.62×100
F134.82×1086.87×1084.94×1054.03×1051.49×1096.69×1088.91×1065.24×1061.29×1047.30×104
F154.73×1073.88×1072.94×1052.75×1051.76×1048.24×1032.80×1051.63×1052.32×1031.67×103
F238.52×1026.99×1017.34×1028.86×1011.05×1038.76×1016.45×1026.58×1016.08×1025.69×101
F279.38×1021.06×1026.78×1028.76×1011.40×1031.52×1026.06×1025.13×1014.99×1025.21×100

Fig.2

Convergence curves of TCABRO and comparison algorithms on benchmark functions"

Table 4

Runtime of TCABRO and comparison algorithms"

函数

PSO

WOA

BRO

M-BRO

TCABRO

F1

0.94

1.03

3.26

3.17

0.84

F6

0.62

0.71

3.61

3.39

1.24

F13

0.41

0.49

3.40

3.20

0.97

F15

0.37

0.47

3.34

3.16

0.93

F23

0.87

0.97

3.93

3.73

1.64

F27

1.16

1.28

4.19

4.08

2.01

Fig.3

Schematic diagram of PUMA 560 robot"

Table 5

D-H parameters of PUMA 560 robot"

序号连杆长度/m扭转角/(°)偏移量/m关节角/(°)
最小值最大值
10900-160160
2000-24545
30.431 8-900.149 1-45225
40.020 3900.133 1-110170
50-900-100100
6000-266266

Table 6

Results of inverse kinematics of the robot"

算法

种群

个数N

最大迭代次数T平均值标准差
TCABRO251003.84×10-64.14×10-6
253005.74×10-77.24×10-7
501009.74×10-71.16×10-6
503002.22×10-83.14×10-8
1001007.62×10-79.73×10-7
1003004.31×10-99.15×10-9
2001001.65×10-82.15×10-8
2003001.67×10-92.28×10-9
3001001.55×10-92.47×10-9
3003003.08×10-104.29×10-10
3005002.10×10-124.09×10-12
BRO251003.70×10-43.50×10-4
253001.80×10-42.10×10-4
501001.90×10-42.10×10-4
503007.24×10-51.50×10-4
1001001.91×10-53.77×10-5
1003001.06×10-42.13×10-5
2001006.95×10-52.37×10-5
2003006.20×10-61.53×10-5
3001001.88×10-63.81×10-6
3003007.14×10-72.78×10-6
3005001.89×10-76.45×10-7
[1] Kong Y, Song S, Zhang N, et al. Design and kinematic modeling of in-situ torsionally-steerable flexible surgical robots[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1864-1871.
[2] Li J, Yu H, Shen N, et al. A novel inverse kinematics method for 6-DOF robots with non-spherical wrist[J]. Mechanism and Machine Theory, 2021, 157: 104180.
[3] Starke S, Hendrich N, Zhang J. Memetic evolution for generic full-body inverse kinematics in robotics and animation[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 406-420.
[4] Rahkar F T. Battle royale optimization algorithm[J]. Neural Computing and Applications, 2021, 33(4): 1139-1157.
[5] Wu H, Zhang X, Song L, et al. A hybrid improved BRO algorithm and its application in inverse kinematics of 7R 6DOF robot[J]. Advances in Mechanical Engineering, 2022, 14(3): 16878132221085125.
[6] Alamgir F M, Alam M S. A novel deep learning-based bidirectional elman neural network for facial emotion recognition[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(10): 2252016.
[7] Karamnejadi A K, Kakouee A, Mollajafari M, et al. Developed design of battle royale optimizer for the optimum identification of solid oxide fuel cell[J]. Sustainability, 2022, 14(16): 14169882.
[8] Akan T, Agahian S, Dehkharghani R. Battle royale optimizer for solving binary optimization problems[J]. Software Impacts, 2022, 12: 100274.
[9] Akan S, Akan T. Battle royale optimizer with a new movement strategy[J]. Handbook of Nature-Inspired Optimization Algorithms, 2022, 9: 265-279.
[10] 国强, 朱国会, 李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报: 工学版, 2023, 53(2): 593-600.
Guo Qiang, Zhu Guo-hui, Li Wan-chen. TDOA/FDOA localization based on chaotic sparrow search algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 593-600.
[11] Wu G, Mallipeddi R, Suganthan P. Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization[R]. Changsha: National University of Defense Technology, 2017.
[12] Kennedy J, Eberhart R. Particle swarm optimization[C]∥Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE, 1995: 1942-1948.
[13] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[14] Elsherbiny A, Elhosseini M A, Haikal A Y. A new ABC variant for solving inverse kinematics problem in 5 DOF robot arm[J]. Applied Soft Computing, 2018, 73: 24-38.
[15] Lv X, Zhao M. Application of improved BQGA in robot kinematics inverse solution[J]. Journal of Robotics, 2019, 2019: 1659180.
[1] Wen-hui LI,Chen YANG. Few-shot remote sensing image classification based on contrastive learning text perception [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2393-2401.
[2] Xiang-jiu CHE,Liang LI. Graph similarity measurement algorithm combining global and local fine-grained features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2365-2371.
[3] Xiang-jiu CHE,Yu-peng SUN. Graph node classification algorithm based on similarity random walk aggregation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2069-2075.
[4] Feng-feng ZHOU,Zhe GUO,Yu-si FAN. Feature representation algorithm for imbalanced classification of multi⁃omics cancer data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2089-2096.
[5] Jian WANG,Chen-wei JIA. Trajectory prediction model for intelligent connected vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1963-1972.
[6] Xiang-jiu CHE,Yu-ning WU,Quan-le LIU. A weighted isomorphic graph classification algorithm based on causal feature learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 681-686.
[7] Li-ming LIANG,Long-song ZHOU,Jiang YIN,Xiao-qi SHENG. Fusion multi-scale Transformer skin lesion segmentation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1086-1098.
[8] Dondrub LHAKPA,Duoji ZHAXI,Jie ZHU. Tibetan text normalization method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3577-3588.
[9] Yu-xin YE,Luo-jia XIA,Ming-hui SUN. Gesture input method based on transparent keyboard in augmented reality environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3274-3282.
[10] Na CHE,Yi-ming ZHU,Jian ZHAO,Lei SUN,Li-juan SHI,Xian-wei ZENG. Connectionism based audio-visual speech recognition method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2984-2993.
[11] Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379.
[12] Shan XUE,Ya-liang ZHANG,Qiong-ying LYU,Guo-hua CAO. Anti⁃unmanned aerial vehicle system object detection algorithm under complex background [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 891-901.
[13] Zheng ZHANG,Qi-dan ZHU,Xiao-long LYU,Xing FAN. Optimized method for solving inverse kinematics of redundant manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3379-3387.
[14] Zhen WANG,Xiao-han YANG,Nan-nan WU,Guo-kun LI,Chuang FENG. Ordinal cross entropy Hashing based on generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3536-3546.
[15] Feng-feng ZHOU,Zhen-wei YAN. A model for identifying neuropeptides by feature selection based on hybrid features [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3238-3245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[2] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[3] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[6] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[7] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[8] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[9] Wang Chao,Song Ke-zhu,Tang Jin . High performance data acquisition system for marine seismic survey[J]. 吉林大学学报(工学版), 2007, 37(01): 168 -172 .
[10] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .