Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (7): 2320-2332.doi: 10.13229/j.cnki.jdxbgxb.20231197

Previous Articles    

Displacement prediction of highway slope based on variational mode decomposition and extreme gradient boosting

Zhi-you LONG1,2(),Zhao-long WAN1,2,Shi DONG1,2(),Chao YANG3,Xiao-yang LIU4   

  1. 1.School of Transportation Engineering,Chang'an University,Xi'an 710064,China
    2.Engineering Research Center of Highway Infrastructure Digitalization,Ministry of Education,Xi'an 710064,China
    3.Shaanxi Expressway Engineering Testing Inspection & Testing Co. ,Ltd. ,Xi'an 710086,China
    4.School of Highway,Chang'an University,Xi'an 710064,China
  • Received:2023-11-04 Online:2025-07-01 Published:2025-09-12
  • Contact: Shi DONG E-mail:longzhiyou@chd.edu.cn;dongshi@chd.edu.cn

Abstract:

Facing the nonlinear, high noisy, and unstable characteristics of highway slope displacement monitoring data lead to insufficient accuracy of slope displacement prediction, this paper proposes a regression prediction algorithm that optimizes the variational mode decomposition(VMD) and extreme gradient boosting(XGBoost) for the processing and prediction of highway slope displacement data. Firstly, the particle swarm optimization is used to find the optimal number of decomposition layers and the penalty factor of VMD, and then the slope displacement data are subjected to VMD to obtain the trend displacement, periodic displacement and random fluctuation displacement features. Secondly, other monitoring data are added as regression prediction feature variables, and the Shapley additive explanation(SHAP) is used to interpret the importance of the input feature variables, and then the important features are screened and inputted into XGBoost model for prediction, and the grid search is used to determine the optimal parameters of the XGBoost model. Finally, the applicability and robustness of the slope displacement decomposition method and regression prediction model proposed in this paper are verified based on actual case analysis.The results show that in the real cases of this paper, for slope displacement data decomposition, VMD has stronger applicability than empirical modal decomposition(EMD) and ensemble empirical modal decomposition(EEMD); for slope displacement prediction, the prediction accuracy of XGBoost is improved by 4.37% and 0.41% compared with the extreme learning machine(ELM) and support vector machine(SVM), respectively. The regression model proposed in this paper has high prediction accuracy and strong robustness. Meanwhile, it is shown that the slope displacement characteristic variables (periodici displacement, random fluctuation displacement and trend displacement) extracted by VMD have a greater degree of SHAP importance for slope displacement prediction. The method proposed in this paper can provide some ideas for highway slope displacement prediction and safety warning research.

Key words: road engineering, highway slope displacement prediction, variational mode decomposition, particle swarm optimization, extreme gradient boosting, robustness test

CLC Number: 

  • U41

Fig.1

Flow chart of PSO-VMD-SHAP-XGBoost model"

Table 1

Slope monitoring content"

监测项目仪器名称仪器型号记录频率单位
地表位移GPS-RTKGSTP-RTK11-130 min/次m
深部位移固定式测斜仪GSTP-ME610-230 min/次°
地下水压力渗压计GSTP-ZX45030 min/次kPa
雨量一体化雨量站-1 d/次mm

Fig.2

Overhead view of slope displacement monitoring sensors deployment location"

Fig.3

Distribution of RTK13 with RTK monitoring data in X and Y directions"

Fig.4

VMD of RTK13 slope displacement monitoring data"

Fig.5

XGBoost model prediction effect"

Fig.6

Scatterplot of prediction results of different input feature models"

Fig.7

Dotted line plots of model prediction results for different input features"

Table 2

Different predictive modelling evaluation results"

边坡类型数据分解方式预测模型模型R2RMSE/mmMAPE/%
A边坡EMDXGBoostEMD-SHAP-XGBoost0.9690.1484.93
SVMEMD-SHAP-SVM0.9680.14912.03
ELMEMD-SHAP-ELM0.9350.2126.57
EEMDXGBoostEEMD-SHAP-XGBoost0.9790.1234.00
SVMEEMD-SHAP-SVM0.9780.1239.74
ELMEEMD-SHAP-ELM0.9670.1524.77
VMDXGBoostPSO-VMD-SHAP-XGBoost0.9800.1193.74
SVMVMD-SHAP-SVM0.9580.1665.17
ELMVMD-SHAP-ELM0.9590.1705.46
-XGBoostXGBoost50.0100.84332.84
-SVMSVM30.9440.1976.27
-ELMELM20.4170.63622.32
B边坡EMDXGBoostEMD-SHAP-XGBoost0.9800.1203.96
SVMEMD-SHAP-SVM0.9800.1209.66
ELMEMD-SHAP-ELM0.9350.2096.17
EEMDXGBoostEEMD-SHAP-XGBoost0.9920.0762.48
SVMEEMD-SHAP-SVM0.9920.0776.12
ELMEEMD-SHAP-ELM0.9090.2478.42
VMDXGBoostPSO-VMD-SHAP-XGBoost0.9980.0351.21
SVMVMD-SHAP-SVM0.9980.0351.31
ELMVMD-SHAP-ELM0.9410.1996.28
-XGBoostXGBoost50.0100.81930.98
-SVMSVM30.5490.54918.97
-ELMELM20.5570.54518.93
[1] 张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1985-2000.
Zhang Qin, Bai Zheng-wei, Huang Guan-wen, et al. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000.
[2] 李博, 李欣, 芮红, 等. 基于变分模态分解和灰狼优化极限学习机的隧道口边坡位移预测[J]. 吉林大学学报:工学版, 2023, 53(6): 1853-1860.
Li Bo, Li Xin, Rui Hong, et al. Displacement prediction of tunnel entrance slope based on variational modal decomposition and grey wolf optimized extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1853-1860.
[3] 李建新, 刘小生, 肖钢, 等. 基于PSR-WSVM模型的边坡位移预测[J]. 大地测量与地球动力学, 2020, 40(6): 577-580.
Li Jian-xin, Liu Xiao-sheng, Xiao Gang, et al. Slope displacement prediction based on PSR-WSVM model[J]. Journal of Geodesy and Geodynamics, 2020, 40(6): 577-580.
[4] 张凯, 张科. 基于LightGBM算法的边坡稳定性预测研究[J]. 中国安全科学学报, 2022, 32(7): 113-120.
Zhang Kai, Zhang Ke. Prediction study on slope stability based on LightGBM algorithm[J]. China Safety Science Journal, 2022, 32(7): 113-120.
[5] 黄智杰, 沈佳, 简文彬, 等. 基于XGBoost模型的降雨诱发阶跃型滑坡位移预测[J]. 自然灾害学报, 2023, 32(2): 217-226.
Huang Zhi-jie, Shen Jia, Jian Wen-bin, et al. Displacement prediction of rainfall-induced step-like landslide based on XGBoost model[J]. Journal of Natural Disasters, 2023, 32(2): 217-226.
[6] Lundberg S M, Lee S I. A unified approach to interpreting model predictions[C]∥Conference and Workshop on Neural Information Processing Systems. California, Long Beach,USA, 2017: 4765-4774.
[7] 周超, 殷坤龙, 黄发明. 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36(9): 2674-2680.
Zhou Chao, Yin Kun-long, Huang Fa-ming. Application of the chaotic sequence WA-ELM coupling model in landslide displacement prediction[J]. Rock and Soil Mechanics, 2015, 36(9): 2674-2680.
[8] 任超, 梁月吉, 庞光锋, 等. 经验模态分解和遗传小波神经网络法用于边坡变形预测[J]. 测绘科学技术学报, 2014, 31(6): 551-555.
Ren Chao, Liang Yue-ji, Pang Guang-feng, et al. The empirical mode decomposition and genetic algorithm wavelet neural network for slope deformation prediction research[J]. Journal of Geomatics Science and Technology, 2014, 31(6): 551-555.
[9] 谢博, 施富强, 廖学燕, 等. 边坡位移的EEMD-PSO-ELM模型预测方法[J]. 中国安全科学学报, 2020, 30(3):157-162.
Xie Bo, Shi Fu-qiang, Liao Xue-yan, et al. Slope displacement prediction method based on EEMD-PSO-ELM model[J]. China Safety Science Journal, 2020, 30(3): 157-162.
[10] 周福成, 唐贵基, 何玉灵. 基于改进VMD的风电齿轮箱不平衡故障特征提取[J]. 振动与冲击, 2020, 39(5): 170-176.
Zhou Fu-cheng, Tang Gui-ji, He Yu-ling. Unbalanced fault feature extraction for wind power gearbox based on improved VMD[J]. Journal of Vibration and Shock, 2020, 39(5): 170-176.
[11] 蔡艳平, 范宇, 陈万, 等. 改进时频分析和特征融合在内燃机故障诊断中的应用[J]. 中国机械工程, 2020, 31(16): 1901-1911.
Cai Yan-ping, Fan Yu, Chen Wan, et al. Applications of improved time-frequency analysis and feature fusion in fault diagnosis of IC engines[J]. China Mechanical Engineering, 2020, 31(16): 1901-1911.
[12] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81.
Tang Gui-ji, Wang Xiao-long. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University, 2015, 49(5): 73-81.
[13] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[14] 黄钦, 谭翠, 杨波. 基于XGBoost算法的亚热带地区生态旅游适宜性评价方法研究[J]. 地球信息科学报, 2024, 26(2): 303-317.
Huang Qin, Tan Cui, Yang Bo. Research on the evaluation method of ecotourism suitability in subtropical regions based on XGBoost algorithm[J]. Journal of Geo-information Science, 2024, 26(2): 303-317.
[15] 闫孟婷, 毛玉鑫, 张天遥, 等. 基于SHAP-XGBoost混合模型的梯级水电站流量动态滞时研究[J]. 电力系统保护与控制, 2023, 51(11): 159-167.
Yan Meng-ting, Mao Yu-xin, Zhang Tian-yao, et al. Dynamic hysteresis of cascade hydropower station discharge based on SHAP-XGBoost hybrid model[J]. Power System Protection and Control, 2023, 51(11): 159-167.
[16] 杨川, 林日成, 季建勇, 等. 基于图深度学习与北斗监测的边坡位移预测研究[J]. 工程地质学报, 2024, 32(2): 612-622.
Yang Chuan, Lin Ri-cheng, Ji Jian-yong, et al. Slope displacement prediction research based on the graph deep learning and beidou monitoring[J]. Journal of Engineering Geology, 2024, 32(2): 612-622.
[17] 张俊, 张建群, 钟敏, 等. 基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断[J]. 振动、测试与诊断, 2020, 40(2): 287-296, 418.
Zhang Jun, Zhang Jian-qun, Zhong Min, et al. PSO-VMD-MCKD based fault diagnosis for incipient damagein wind turbine rolling bearing[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(2): 287-296, 418.
[18] 赵博超, 马嘉骏, 崔磊, 等. 基于改进VMD-XGBoost-BILSTM组合模型的光伏发电异常检测方法[J]. 计算机工程, 2024, 50(3): 306-316.
Zhao Bo-chao, Ma Jia-jun, Cui Lei, et al. Photovoltaic anomaly detection based on improved VMD-XGBoost-BILSTM hybrid model[J]. Computer Engineering, 2024, 50(3): 306-316.
[19] 徐开心, 戴宁, 汝欣, 等. 基于概率分布和XGBoost决策算法的织机异常数据处理方法[J]. 计算机集成制造系统, 2025, 31(6): 2021-2130.
Xu Kai-xin, Dai Ning, Ru Xin, et al. Loom abnormal data processing method based on probability distribution and XGBoost decision algorithm[J]. Computer Integrated Manufacturing Systems, 2025, 31(6): 2021-2130.
[20] 吴飞, 王鹏程, 杨康. 基于PCA-SSA-XGBoost的车辆驾驶性评估[J]. 吉林大学学报: 工学版, 2025, 55(1): 355-365.
Wu Fei, Wang Peng-cheng, Yang Kang. Drivability evaluation model based on PCA-SSA-XGBoost[J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 355-365.
[1] Yao-gang TIAN,Jing JIANG,Cheng ZHAO,Xiao-min YANG,Jun ZHANG,Kan JIA. Temperature resistance mechanism of high-early-strength cement mortar modified with waterborne epoxy resin [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2203-2211.
[2] Kang YAO,Qiao DONG,Xue-qin CHEN,Bin SHI,Shi-ao YAN,Xiang WANG. Mixed⁃mode mesoscale fracture behavior of concrete based on a phase field regularized cohesive zone model [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2286-2297.
[3] Wan-feng WEI,Hong-gang ZHANG,Yang-peng ZHANG,Fan YANG,Bo-ming TANG,Ling-yun KONG. Research progress on modification mechanism, preparation and performance of waste rubber powder modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1834-1853.
[4] Zhen YANG,Rui-ping ZHENG,Zhe GONG. Highway infrastructure performance and traffic state prediction on road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1973-1983.
[5] An-shun ZHANG,Wei FU,Jun-hui ZHANG,Feng GAO. Shear properties and stress-strain relationships characterization of Changsha compacted clay [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1604-1616.
[6] Yan-fei LI,Jia-ning WU. Human pose local feature recognition algorithm based on improved RBF neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1749-1755.
[7] Qing-liang JIN,Xin-sen ZHOU,Yi CHEN,Cheng-wen WU. Predictive model for identifying innovative university talents based on the swarm intelligence evolution enhanced kernel extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1763-1771.
[8] Yi GUO,Shu-wei WEI,Tao JIANG. Urban passenger transport planning algorithm based on location potential energy and multi source data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1328-1335.
[9] Li-ming WANG,Zi-kun SONG,Hui ZHOU,Wen WEI,Hao YUAN. Rheological response and response mechanism of petroleum asphalt treated with ultrasound [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1346-1355.
[10] Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887.
[11] Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898.
[12] Hua-zhen FANG,Li LIU,Qing GU,Xiao-feng XIAO,Yu MENG. Driving intention recognition based on trajectory prediction and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 623-630.
[13] Teng-fei NIAN,Zhao HAN,Zhi-qiang WEI,Guo-wei WANG,Jin-guo GE,Ping LI. Mesoscopic numerical modeling method of asphalt mix considering aggregate morphology [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 639-652.
[14] Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663.
[15] Fei WU,Peng-cheng WANG,Kang YANG. Drivability evaluation model based on PCA-SSA-XGBoost [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 105-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!