Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1749-1755.doi: 10.13229/j.cnki.jdxbgxb.20240464

Previous Articles     Next Articles

Human pose local feature recognition algorithm based on improved RBF neural network

Yan-fei LI(),Jia-ning WU   

  1. College of Mechanical and Electrical Engineering,Hunan Agricultural University,Changsha 410125,China
  • Received:2024-04-29 Online:2025-05-01 Published:2025-07-18

Abstract:

Therefore, with the human pose recognition problem of robots as the core, a local feature recognition algorithm for human pose based on an improved RBF neural network is proposed to improve recognition accuracy. Using a depth camera to obtain three-dimensional orientation data of human joint points, normalizing the orientation data, and constructing three-dimensional coordinates of joint points; Considering the differences between different individuals, in order to achieve nonlinear mapping and optimization of human pose data, accurately identify different individual poses, a Newrbe function is used to construct an RBF neural network, extract feature vectors of human pose data, and provide important basis for recognition; To enhance the ability of RBF neural networks to handle different individual pose differences, ensure recognition accuracy and adaptability, particle swarm optimization algorithm is used to improve the neural network, and genetic operations are performed on particles with specific probabilities to achieve network optimization and obtain local feature recognition results of human pose. The experimental results show that the proposed algorithms have relatively low relative errors, can be maintained below 0.8, high recognition accuracy, and the loss function is minimized when the number of iterations reaches 20. The convergence speed is fast, which can provide a solid foundation for human-machine interaction in the field of agricultural mechanization.

Key words: improve rbf neural network, human posture, local feature recognition, three dimensional coordinates, particle swarm optimization

CLC Number: 

  • TP391

Fig.1

Schematic diagram of human joint points"

Fig.2

Schematic diagram of experimental environment"

Fig.3

11 Schematic diagrams of human body postures"

Fig. 4

Feature extraction results"

Fig.5

Comparison of convergence speed for local feature recognition of different pose algorithms"

Fig.6

Comparison of the mean relative error for local feature recognition of postures using different algorithms"

Fig.7

Comparison of ROC curves for local feature recognition of poses using different algorithms"

[1] 陈怀林, 李文欣, 杜歆桐, 等.基于情境感知的智慧农机管控系统交互设计研究[J].包装工程, 2023, 44(22): 123-130.
Chen Huai-lin, Li Wen-xin, Du Xin-tong, et al. Interaction design of intelligent agricultural machinery managementand control system based on context-awareness[J]. Packaging Engineering, 2023, 44(22):123-130.
[2] 段铭钰, 袁瑞甫, 杨艺. 基于改进RBF神经网络的采煤机截割煤岩性状智能识别[J]. 河南理工大学学报:自然科学版, 2022,41(1): 43-51.
Duan Ming-yu, Yuan Rui-fu, Yang Yi. Intelligent recognition of coal and rock properties in shearer cutting process based on improved RBF neural network[J].Journal of Henan Polytechnic University (Natural Science), 2022, 41(1): 43-51.
[3] 曾明如, 熊嘉豪, 祝琴. 基于T-Fusion的TFP3D人体行为识别算法[J].计算机集成制造系统, 2023, 29(12): 4032-4039.
Zeng Ming-ru, Xiong Jia-hao, Zhu Qin. TFP3D human behavior recognition algorithm based on T-Fusion[J].Computer Integrated Manufacturing Systems,2023, 29(12): 4032-4039.
[4] 余金锁, 卢先领. 基于分割注意力的特征融合CNN-Bi-LSTM人体行为识别算法[J].电子测量与仪器学报, 2022, 36(2): 89-95.
Yu Jin-suo, Lu Xian-ling. Human action recognition algorithm of feature fusion CNN-Bi-LSTM based on split-attention[J].Journal of Electronic Measurement and Instrumentation, 2022, 36(2): 89-95.
[5] 孙剑明, 韩生权, 沈子成, 等. 基于双卷积链的双目人体姿态距离定位识别[J]. 兵工学报, 2022,43(11): 2846-2854.
Sun Jian-ming, Han Sheng-quan, Shen Zi-cheng, et al. Binocular human pose and distance identification based on double convolutional chain[J].Acta Armamentarii, 2022, 43(11): 2846-2854.
[6] Nguyen T T, Pham D T, Vu H, et al. A robust and efficient method for skeleton-based human action recognition and its application for cross-dataset evaluation[J].IET Computer Vision,2022,16(8):709-726.
[7] Huang Y Z, Zhao H M, Zhao X T, et al.Pattern recognition using self-reference feature extraction for?-OTDR[J].Applied Optics,2022,61(35):10507-10518.
[8] Zeng Y M, Xiang H J, Zheng N, et al. Flexible triboelectric nanogenerator for human motion tracking and gesture recognition[J]. Nano Energy,2022, 91: 106601.
[9] 李新春, 张玉琛, 阳士宇. 融合全局与局部特征的UWB雷达人体动作识别算法[J].重庆邮电大学学报: 自然科学版, 2023, 35(4): 636-645.
Li Xin-chun, Zhang Yu-chen, Yang Shi-yu. Human action recognition algorithm incorporating global andlocal features by UWB radar[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2023,35(4):636-645.
[10] Wang C, Zhang F, Zhu X T, et al.Low-resolution human pose estimation[J].Pattern Recognition: The Journal of the Pattern Recognition Society, 2022,126: 108579.
[11] 宋玉琴, 曾贺东, 高师杰, 等.基于改进高分辨表征的人体姿态估计算法[J]. 计算机工程与设计, 2022, 43(4): 1045-1051.
Song Yu-qin, Zeng He-dong, Gao Shi-jie, et al. Human pose estimation algorithm based on improved high resolution representation[J].Computer Engineering and Design,2022,43(4): 1045-1051.
[12] Li J C, Han R, Feng W, et al. Contactless interaction recognition and interactor detection in multi-person scenes[J]. Frontiers of Computer Science, 2024, 18(5): 185325.
[13] 邓平, 吴明辉. 基于机器学习的人体运动姿态识别方法[J]. 中国惯性技术学报, 2022,30(1): 37-43.
Deng Ping, Wu Ming-hui.Human motion attitude recognition method based on machine learning[J]. Journal of Chinese Inertial Technology, 2022, 30(1): 37-43.
[14] Zhang Y Q, Ding K, Hui J Z, et al.Human-object integrated assembly intention recognition for context-aware human-robot collaborative assembly[J]. Advanced Engineering Informatics, 2022,54: 101792.
[15] Meng C, He X, Luan T L.Gait recognition based on 3D human body reconstruction and multi-granular feature fusion[J].Journal of Supercomputing, 2023, 79(11): 12106-12125.
[16] 刘锁兰, 周岳靖, 王洪元, 等.基于全局图遍历的ST-GCN人体行为识别算法[J]. 扬州大学学报: 自然科学版, 2022, 25(2): 62-68.
Liu Suo-lan, Zhou Yue-jing, Wang Hong-yuan, et al. ST-GCN human action recognition algorithm based on global graph traversal[J]. Journal of Yangzhou University (Natural Science Edition), 2022,25(2):62-68.
[17] 陈琳, 王子微, 莫玉良, 等. 改进的自适应复制、交叉和突变遗传算法[J]. 计算机仿真, 2022,39(8): 323-326.
Chen Lin, Wang Zi-wei, Mo Yu-liang, et al. Im⁃proved genetic algorithms for adaptive replication crossover and mutation[J]. Computer Simulation, 2022, 39 (8): 323-326.
[18] Fang N, Wei J, Feng T, et al. Feature super-resolution based facial expression recognition for multi-scale low-resolution images[J]. Knowledge-based systems, 2022, 236(25): 1076781.
[19] 王亚东, 秦会斌. 结合不确定性估计的轻量级人体关键点检测算法[J]. 电子技术应用, 2023, 49(10): 40-45.
Wang Ya-dong, Qin Hui-bin.Lightweight human key point detection algorithm with uncertainty[J].Application of Electronic Technique,2023,49(10):40-45.
[20] Abul A B, Ram K K, Rahul J. A convolutional neural network and classical moments-based feature fusion model for gesture recognition[J]. Multimedia Systems, 2022, 28(5): 1779-1792.
[1] Qing-liang JIN,Xin-sen ZHOU,Yi CHEN,Cheng-wen WU. Predictive model for identifying innovative university talents based on the swarm intelligence evolution enhanced kernel extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1763-1771.
[2] Yi GUO,Shu-wei WEI,Tao JIANG. Urban passenger transport planning algorithm based on location potential energy and multi source data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1328-1335.
[3] Liang-li ZHANG,Xiao-feng MA. New energy vehicle charging station location method based on improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2275-2281.
[4] Xiao-hong TANG,Yong-jian GONG. Trajectory planning algorithm for grasping manipulator considering energy consumption and load factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1862-1868.
[5] Guang-bao LI,Dong GAO,Yong LU,Hao PING,Yuan-yuan ZHOU. Internal surface treatment of gas-liquid-solid technology based on improved neural network and Fluent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1537-1547.
[6] Tao CHEN,Zhi-gang ZHOU,Nan-nan LEI. Multi-objective optimization of parameters of automotive mechanical automatic transmission system based on particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1214-1220.
[7] Ya-dong GONG,Ming-xiang DING,Xiang LI,Jin-min TIAN. Milling analysis and parameter optimization for TC4 titanium alloy material [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 917-925.
[8] Guo-jin TAN,Qing-wen KONG,Xin HE,Pan ZHANG,Run-chao YANG,Yang-jun CHAO,Zhong YANG. Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1592-1600.
[9] Jian WU,Bin XU. Displacement interval prediction model and simulation of accumulation landslide based on ceemdan theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 562-568.
[10] Jie LI,Chang-wang JIA,Qi ZHAO. Solution of nonlinear equilibrium state of vehicle steering and its stability determination [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3326-3334.
[11] Zheng ZHANG,Qi-dan ZHU,Xiao-long LYU,Xing FAN. Optimized method for solving inverse kinematics of redundant manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3379-3387.
[12] Pei-ran YING,Xiao-qing ZENG,Tuo SHEN,Teng-fei YUAN,Hai-feng SONG,Yi-zeng WANG. Redundant operation code-based intelligent algorithm for energy⁃efficient driving of high-speed train [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3404-3414.
[13] Yong-gang CHEN,Ji-ye XU,Hai-yong WANG,Wen-xiang XIONG. Fault diagnosis method of point machine based on adaptive neural fuzzy inference network system [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3274-3280.
[14] Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202.
[15] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xu An,Qiao Xiang-ming. Failure rate expression of complex equipment based on renewal theory[J]. 吉林大学学报(工学版), 2006, 36(03): 359 -0362 .
[2] Lu Shou-feng,Yang Zhao-sheng,Liu Xi-min . Synergy of traffic signal control and route guidance
based on multiagent system
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 143 -146 .
[3] . [J]. 吉林大学学报(工学版), 2005, 35(03): 272 -276 .
[4] LI Yan-jiang, DUAN Guang-ren . Robust passive control for discretetime T-S fuzzy systems[J]. 吉林大学学报(工学版), 2008, 38(05): 1208 -1214 .
[5] Yu Bin, Yang Zhong-zhen, Cheng Chun-tian, Zuo Zhi . Bi-level programming model for optimizing bus frequencies and its algorithm[J]. 吉林大学学报(工学版), 2006, 36(05): 664 -0668 .
[6] GE Hong-wei, LIANG Yan-chun. Evolutionary Elman Neural Network Model and[J]. 吉林大学学报(工学版), 2005, 35(05): 511 -0519 .
[7] Liao Qing-bin, Li Shun-ming, Qin Xiao-pan . Comparison of feature extraction methods of vehicle vibration signal[J]. 吉林大学学报(工学版), 2007, 37(04): 910 -915 .
[8] Chen Geng-ye, Ye Zeng-ping, Wang Yuan, Gu Chuan-hong. Relative permeability coefficient of concrete through injecting water and electrical resistance monitoring[J]. 吉林大学学报(工学版), 2006, 36(06): 1019 -1024 .
[9] ZHOU Feng-dao,LIN Jun,ZHU Kai-guang,ZHOU Guo-hua,LIU Chang-sheng . Design of transmit current recorder of transient electromagnetic detection system[J]. 吉林大学学报(工学版), 2009, 39(02): 541 -0545 .
[10] ZHAO Hong-wei,FENG Jia,ZANG Xue-bai,SONG Bo-tao. Practical moving target detection and tracking algorithm[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 386 -0390 .