Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 105-115.doi: 10.13229/j.cnki.jdxbgxb.20230215

Previous Articles    

Drivability evaluation model based on PCA-SSA-XGBoost

Fei WU(),Peng-cheng WANG,Kang YANG   

  1. School of Mechanical & Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China
  • Received:2023-03-10 Online:2025-01-01 Published:2025-03-28

Abstract:

To improve the efficiency and quality of vehicle driveability evaluation, a driving evaluation model based on principal component analysis, limit gradient lifting tree and Sparrow optimization algorithm was proposed.The dynamic upshift of Dual clutch transmission(DCT) vehicle is taken as a typical working condition, and 18 objective evaluation indexes are studied and defined. Principal component analysis was used to reduce the objective evaluation index, reduce its redundancy and coupling. The Extreme Gradient Boosting algorithm model was trained to predict the subjective driving score, and the Sparrow algorithm was used to improve the accuracy and stability of the model. The road test shows that the accuracy of the model is 97% after the objective evaluation index is reduced by principal component analysis. It is better than BPNN(90%), SVM(91%), ELM(92%) and SSA-XGBoost (95%). It is proved that the accuracy and stability of the proposed PCA-SSA-XGBoost model are better than other models, and can complete the driving evaluation more effectively.The evaluation model can be applied to other driving conditions and has application value to solve the problem of subjective and objective mapping in driving evaluation.

Key words: drivability, principal component analysis, sparrow algorithm, extreme gradient boosting algorithm

CLC Number: 

  • U461

Fig.1

Data acquisition system"

Table 1

Summary of signals"

信号名称单位信号名称单位
发动机转速(E)r/min发动机扭矩(ET)N·m
输入轴转速(EI)r/min车速(vkm/h
输出轴转速(EO)r/min加速度(am/s2
离合器1扭矩(CT1)N·m油门开度(TO)%
离合器2扭矩(CT2)N·m踏板角度(PO)-
离合器1状态(CS1)-目标挡位(TG)-
离合器2状态(CS2)-当前挡位(CG)-

Fig.2

Objective index diagram"

Table 2

Objective evaluation index"

指标单位定义
Dds升挡响应时间
Tds升挡持续时间
Rds传动比变化时间
GSds扭矩传递时间
ameanm/s2纵向加速度算术平均值
apeakm/s2纵向加速度峰值
Δaholem/s2纵向加速度最大扰动值
Δapeak-peakm/s2纵向加速度峰峰值
agrad-纵向加速度最大梯度
jpeakm/s3冲击度峰值
jgrad-冲击度最大梯度
VDVshiftm/s1.75纵向冲击剂量值
ΔEpeakr/min发动机转速超调
Egrad-发动机转速梯度
Vδ-车速变化线性度
alossm/s2平均加速度损失
ΔCTsN·m结合初始扭矩振荡
ΔCTdN·m结合结束扭矩振荡

Fig.3

Model construction flow chart"

Fig.4

Subjective scoring criteria"

Table 3

Optimization range"

超参数寻优范围
max_depth115
min_child_weight110
learning_rate[0.01,0.2]

Fig.5

Scree test"

Table 4

Variance contribution rate of objective indicators"

成分初始特征值主成分提取

特征

方差百分比/%累积/%

特征

方差百分比/%累积/%
F16.48936.05136.0516.48936.05136.051
F22.69914.99451.0452.69914.99451.045
F31.80410.02061.0661.80410.0261.066
F41.5788.76669.8311.5788.76669.831
F51.0555.85975.6901.0555.85975.69
F60.9375.20780.8970.9375.20780.897
F70.7624.23385.1300.7624.23385.13
F80.6133.40888.5370.6133.40888.537
F90.5653.13891.6750.5653.13891.675
F100.4282.37694.052---
F110.3792.10396.155---
F120.3211.78197.936---
F130.1941.07799.013---
F140.0910.50899.522---
F150.0630.35299.874---
F160.0180.10199.975---
F170.0030.01599.990---
F180.0020.010100.000---

Table 5

Variance contribution rate of objective indicators"

特征指标载荷系数
F1F2F3F4F5F6F7F8F9
Dd-0.2060.8290.192-0.1420.0130.3400.0730.160-0.058
Td-0.3980.8130.2750.2240.0510.1020.0350.132-0.032
Rd-0.4430.3240.2180.6290.072-0.312-0.0250.0080.003
GSd0.1080.232-0.377-0.3690.6380.292-0.186-0.201-0.177
amean0.8710.367-0.0770.0480.094-0.0520.067-0.1390.071
apeak0.9620.102-0.0580.0550.031-0.1150.047-0.1020.064
Δahole0.3850.1080.6000.082-0.2480.3620.197-0.3690.093
Δapeak-peak0.894-0.0320.2800.015-0.018-0.117-0.052-0.003-0.110
agrad0.223-0.3130.4870.1950.2960.167-0.5570.1510.339
jpeak0.514-0.3500.603-0.0560.0740.129-0.021-0.072-0.307
jgrad0.037-0.3400.374-0.1350.573-0.130.5470.2500.095
VDVshift0.9400.194-0.0980.0590.044-0.1080.065-0.1080.101
ΔEpeak0.8020.326-0.2700.1010.095-0.0690.049-0.0260.270
Egrad0.620-0.3260.003-0.467-0.3250.042-0.0140.2400.026
Vδ0.6400.494-0.002-0.274-0.1350.005-0.0640.3550.066
aloss-0.680-0.163-0.098-0.188-0.0610.3240.170-0.1080.416
ΔCTs0.348-0.373-0.3870.5840.0660.2360.1080.065-0.018
ΔCTd0.479-0.197-0.2680.471-0.0680.4780.0990.248-0.140

Table 6

Model construction parameter"

模型参数取值
boostergbtree
objectivereg:linear
learning_rate0.098
max_depth8
min_child_weight3
n_estimators300
colsample_bytree1
Subsample0.9
num_parallel_tree1

Fig.6

PCA-SSA-XGBoost evaluation results"

Fig.7

Comparison of model prediction results"

Fig.8

Comparison of evaluation indexes"

Table 7

Comparison of model accuracy"

模  型预测合格率/%
BPNN90
SVM91
ELM92
SSA-XGBoost95
PCA-SSA-XGBoost97
1 Zhou W, Guo X, Pei X, et al. Research on objective drivability evaluation with multi-source information fusion for passenger car[C]∥SAE Papers,2020-01-1044.
2 Koch Andreas, Brauer Jonas, Falkenstein Jens.Drivability optimization of electric vehicle drivetrains for brake blending maneuvers[J].World Electric Vehicle Journal,2022, 13(209): No.13110209.
3 Shin C W, Kim H, Kim M K, et al. Development of an evaluation method for quantitative driveability in heavy-duty vehicles[J].Journal of Mechanical Science and Technology,2014, 28(5): 1615-1621.
4 Chang Woo Shin, Choi Jongdae,Suk Won Cha, et al. An objective method of driveability evaluation using a simulation model for hybrid electric vehicles[J].International Journal of Precision Engineering and Manufacturing,2014, 15(2): 219-226.
5 宋世欣,张元侠,刘科,等.双离合器自动变速器控制品质评价指标分析[J].汽车工程,2015,37(8): 925-930, 958
Song Shi-xin, Zhang Yuan-xia, Liu Ke, et al. Analysis of control quality evaluation index of dual clutch automatic transmission[J]. Automobile Engineering,2015,37(8): 925-930, 958
6 Chandrasekaran K, Rao N, Palraj S,et al. Objective drivability evaluation on compact SUV and comparison with subjective drivability[C]∥SAE Paper, 2017-26-0153, 2017.
7 黄伟,刘海江,童荣辉,等.车辆驾驶性评估方法在蠕行工况中的应用[J].哈尔滨工业大学学报,2018,50(7): 126-130.
Huang Wei, Liu Hai-jiang, Tong Rong-hui,et al. Application of vehicle driveability evaluation method in creep driving condition[J]. Journal of Harbin Institute of Technology, 2018,50(7): 126-130.
8 刘海江,徐新胜,李敏.双离合自动变速器车辆换挡品质模糊综合评价[J].哈尔滨工业大学学报,2020,52(7): 43-51.
Liu Hai-jiang, Xu Xin-sheng, Li Min. Fuzzy comprehensive evaluation of shifting quality of dual clutch Automatic transmission vehicles[J]. Journal of Harbin Institute of Technology,2022,52(7): 43-51.
9 Huang Xin-cheng.A fuzzy evaluation method for the drivability of new energy vehicles based on similarity[J].Journal of Physics: Conference Series,2022, 2218(1): No.012066.
10 Schoeggl Peter, Ramschak Erich.Vehicle driveability assessment using neural networks for development, calibration and quality tests[J].SAE Transactions,2000,109: 1052-1061.
11 张建国. 基于神经网络的AMT换档品质评价方法研究[D]. 长春:吉林大学汽车工程学院, 2007.
Zhang Jian-guo. Research on the evaluation method of AMT shift quality based on neural network[D]. Changchun: College of Automotive Engineering, Jilin University,2007.
12 孙贤安,吴光强.双离合器式自动变速器车辆换挡品质评价系统[J].机械工程学报,2011(8): 146-151.
Sun Xian-an, Wu Guang-qiang. Shift quality evaluation system of dual clutch automatic transmission vehicle[J]. Journal of Mechanical Engineering,2011(8): 146-151.
13 王叶,陶刚,李德晴,等.综合传动换挡品质的误差逆传播神经网络评价方法[J].兵工学报,2014(4): 495-500.
Wang Ye, Tao Gang, Li De-qing,et al. An error back propagation neural network evaluation method for shift quality of integrated transmission[J]. Armaments Engineering Journal,2014(4): 495-500.
14 孙坚.驾驶性评价及其仿真方法研究[D].长春: 吉林大学交通学院,2017.
Sun Jian. Research on drivability Evaluation and Simulation method[D]. Changchun: College of Transpotation, Jilin University,2017.
15 Huang W, Liu H J, Ma Y F, et al.Drivability evaluation model using principal component analysis and optimized extreme learning machine[J]. Journal of Vibration & Control,2019,25(16): 2274-2281.
16 刘海江,邢证.基于粗糙集理论的双离合器自动变速器车辆换挡品质评价指标约简[J].哈尔滨工业大学学报,2021,53(7): 164-170.
Liu Hai-jiang, Xing Zheng. Reduction of shift quality evaluation index of dual clutch automatic transmission vehicle based on rough set theory[J]. Journal of Harbin Institute of Technology,2021,53(7): 164-170.
17 莫易敏,胡恒,王骏,等.基于神经网络的车辆急加速工况驾驶性评价研究[J].汽车技术,2021,(4): 12-18.
Mo Yi-min, Hu Heng, Wang Jun, et al. Research on driving evaluation of vehicle under rapid acceleration condition based on neural network[J]. Automobile Technology,2021(4): 12-18.
18 刘洪波,雷雨龙,张建国,等.双离合器式自动变速器换档品质评价与优化[J].吉林大学学报:工学版,2012,42(6): 1360-1365.
Liu Hong-bo, Lei Yu-long, Zhang Jian-guo, et al. Evaluation and optimization of shift quality of dual clutch automatic transmission[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(6): 1360-1365.
19 王鑫.基于主客观数据的整车驾驶性评价方法研究[D].重庆:重庆大学汽车工程学院,2019.
Wang Xin. Research on vehicle driveability evaluation method based on subjective and objective data[D]. Chongqing: College of Vehicle Engineering, Chongqing University,2019.
20 付尧.基于客观评价的双离合器自动变速器换挡控制技术研究[D].长春:吉林大学汽车工程学院,2015.
Fu Yao. Research on shifting control technology of dual clutch automatic transmission based on objective evaluation[D]. Changchun: College of Automotive Engineering,Jilin University,2015.
21 Heusch C, Guse D, Dorscheidt F,et al.Analysis of drivability influence on tailpipe emissions in early stages of a vehicle development program by means of engine-in-the-loop test benches[C]//SAE Paper,2020-01-0373.
22 Tatas Lauritz,Maximilian Kurt Wick, Birmes Georg.Objectified drivability analysis and evaluation of deceleration maneuvers for electric vehicles[J].SAE International Journal of Engines,2021,14(3): 387-403.
23 李岩,张久鹏,陈子璇,等.基于PCA-PSO-SVM的沥青路面使用性能评价[J].吉林大学学报:工学版,2023,53(6):1729-1735.
Li Yan, Zhang Jiu-peng, Chen Zi-xuan, et al. Performance evaluation of asphalt pavement based on PCA-PSO-SVM[J]. Journal of Jilin University(Engineering and Technology Edition),2023,53(6):1729-1735.
24 刘兴涛,刘晓剑,武骥,等.基于曲线压缩与XGBoost算法的锂离子电池SOH估计[J/OL].[2023-03-03]..
[1] Shi-jun SONG,Min FAN. Design of big data anomaly detection model based on random forest algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2659-2665.
[2] Yan LI,Jiu-peng ZHANG,Zi-xuan CHEN,Guo-jing HUANG,Pei WANG. Evaluation of asphalt pavement performance based on PCA⁃PSO⁃SVM [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1729-1735.
[3] Yong-fei ZHANG,Tao CHEN. Design of communication data classification algorithm based on fuzzy segmentation of time series [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3268-3273.
[4] Lin JIANG,Li YANG,Wen-jun ZHANG,Qiong-yu ZHANG,Yan-xia WU. Detection and processing algorithm of slope point cloud in obstacle detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3221-3228.
[5] Qiang GUO,Ming-song LI,Kai ZHOU. Multi⁃mode radar signal sorting based on potential distance graph and improved cloud model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1904-1911.
[6] Xing-tao LIU,Xiao-jian LIU,Ji WU,Yao HE,Xin-tian LIU. State of health estimation method for lithium⁃ion battery based on curve compression and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1273-1280.
[7] Zhen CAO,Lu-yao CUI,Bin LEI,Jing-yi WANG,Shuang-sheng CAO. Feature dimensionality reduction and random forest method in intelligent diagnosis of rolling bearings for urban rail trains [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2287-2293.
[8] Hong-xue LI,Shi-wu LI,Wen-cai SUN,Wei LI,Meng-zhu GUO. Driving cycle construction of heavy semi⁃trailers carrying hazardous cargos [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1700-1707.
[9] Li-qun WU,Liang-liang ZHANG. Health detection of bridge structures based on data mining technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 565-571.
[10] Ting YAN,Lin YANG,Liang CHEN. AMT shift actuator adaptive intelligent control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1441-1450.
[11] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[12] ZHANG Man, SHI Shu-ming. Analysis of state transition characteristics for typical vehicle driving cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1008-1015.
[13] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[14] SU Chang, FU Li-ming, WEI Jun, LI Shuo, HUANG Lei, CAO Yue. Design method in exterior color based Kansei engineering and principal component analysis [J]. 吉林大学学报(工学版), 2016, 46(5): 1414-1419.
[15] MA Shuang, ZHOU Chang-jiu, ZHANG Lian-dong, HONG Wei, TIAN Yan-tao. Twist-lock online recognition based on improved incremental PCA by Kinect [J]. 吉林大学学报(工学版), 2016, 46(3): 890-896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!