Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2003-2014.doi: 10.13229/j.cnki.jdxbgxb.20230939

Previous Articles     Next Articles

Expressway small object detection algorithm based on deep learning

Hui-zhi XU1(),Dong-sheng HAO1,Xiao-ting XU2,Shi-sen JIANG1   

  1. 1.School of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China
    2.Test and Inspection Center,Zhejiang Highway Technician College,Hangzhou 310007,China
  • Received:2023-09-05 Online:2025-06-01 Published:2025-07-23

Abstract:

To address the challenging issue of real-time detection of small distant pedestrians and vehicles in images captured by roadside cameras on expressways, an improved object detection algorithm YOLOv5s-3S-4PDH was proposed. Firstly, the Shufflenetv2-Stem-SPPF network structure was used to improve the running speed of the algorithm. Secondly, the accelerated normalized weighted fusion feature map and the 160×160 small object detection layer were introduced to optimize the performance of small object detection; Then, the improved decoupling head mechanism was introduced to improve the localization and classification accuracy of small object detection. Finally, Focal EIoU was used as the localization loss function of the algorithm to accelerate the training convergence speed of the algorithm. The results show that: compared with the YOLOv5s on the self-built pedestrian and vehicle dataset, the computation and parameter amount of the proposed algorithm are reduced by 10.1% and 24.6%, respectively, and the detection speed and accuracy are increased by 15.4% and 2.1%, respectively; Transfer learning experiment on the VisDrone2019 dataset shows that the proposed algorithm has better average precision for all categories. The proposed algorithm not only meets the real-time and accuracy requirements of small object detection, but also has generalization ability.

Key words: transportation planning and management, expressway, object detection, deep learning

CLC Number: 

  • U495

Fig.1

Network structure diagram of improved YOLOv5s"

Fig.2

Unit module of ShuffleNetv2"

Fig.3

Network structure diagram of Stem module"

Fig.4

Multi-scale feature fusion network for added 160×160 layer"

Fig.5

Schematic diagram of decoupling head of YOLOX"

Fig.6

Schematic diagram of improved decoupling head"

Fig.7

Standardized distribution of pedestrian and vehicle positions and widths"

Fig.8

Self-built pedestrian and vehicle datasets"

Table 1

Model training environment"

环境项环境规格
CPUInter(R) Core(TM) i9-12900
内存64 GB
显卡NVIDA RTX A4000
操作系统Windows 11
编程语言Python 3.9.10
深度学习框架Pytorch 1.12.1
集成开发环境Pycharm社区版2022.3.2
CUDA12.0
CUDNN8.3.2

Table 2

Experimental hyperparameters"

超参数系数值
初始学习率0.01
循环学习率0.01
动量0.937
权重衰减系数0.000 5
预热学习轮数3.0
预热学习动量0.8
预热初始偏置学习率0.1
边界框回归损失系数0.05
分类损失系数0.5
置信损失系统1.0
有无物体BCE Loss中正样本权重1.0
分类BCE Loss中正样本权重1.0
IoU训练阈值0.2
Anchor的宽高比4.0

Table 3

Comparative experimental results of different backbone networks"

模型主干网络AP@0.5/%mAP@0.5/%FPSParams/106FLOPs/109
行人车辆
YOLOv5sC3Net89.395.392.326.67.0215.8
YOLOv5s-1SShufflenetv283.093.988.550.23.347.3
YOLOv5s-2SShufflenetv2-Stem86.792.390.448.73.369.0
YOLOv5s-3SShufflenetv2-Stem-SPPF88.194.991.546.54.029.5

Table 4

Ablation experiment results"

序号Focal EIoUBiFPN解耦头

增加160×160

检测层

AP@0.5/%mAP@0.5/%FPSParams/106FLOPs/109
行人车辆
YOLOv8s91.895.993.829.611.128.4
188.194.991.546.54.029.5
2??88.3(+0.2)95.2(+0.3)91.8(+0.3)45.44.029.5
3????88.6(+0.3)95.3(+0.1)91.9(+0.1)40.14.1710.2
4??????90.1(+0.5)95.4(+0.1)92.7(+0.8)38.64.4010.9
5????????93.1(+3.0)95.5(+0.1)94.4(+1.7)30.75.3114.2

Table 5

Algorithm performance comparison"

算法mAP@0.5FPSParamsFLOPs
YOLOv5s+2.1+15.4-24.6-10.1
YOLOv8s+0.6+3.7-52.2-50.0

Fig.9

Model loss diagram"

Fig.10

Model evaluation indicator diagram"

Fig.11

Example of VisDrone 2019 dataset"

Table 6

Results of the transfer learning experiment"

种类YOLOv5sYOLOv5s-3S-4DPH
P/%R/%AP@0.5/%P/%R/%AP@0.5/%
pedestrian48.539.740.756.441.745.6
people45.235.633.549.835.236.4
bicycle29.116.913.829.016.714.5
car64.073.574.467.280.981.1
van47.536.936.850.741.842.2
truck55.330.932.247.031.632.3
tricycle40.723.119.944.225.124.6
awning-tricycle24.011.610.426.715.413.3
bus61.143.846.862.550.253.3
motor48.043.239.153.745.344.6
mAP@0.5/%34.838.8
mAP@0.5:0.95/%19.222.1

Fig.12

Comparison of detection effects of different algorithms"

[1] 梁鸿, 王庆玮, 张千, 等. 小目标检测技术研究综述[J]. 计算机工程与应用, 2021, 57(1): 17-28.
Liang Hong, Wang Qing-wei, Zhang Qian, et al. Small object detection technology: a review[J]. Computer Engineering and Applications, 2021, 57(1): 17-28.
[2] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 21(8): 91-103.
[3] Krizhevsky A, Sutskever I, Hinton E G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[4] 王芋人, 武德安. 一种提高小目标检测准确率的数据增强方法[J]. 激光杂志, 2021, 42(11): 41-45.
Wang Yu-ren, Wu De-an. Data augmentation method for improving the accuracy of small target detection[J]. Laser Journal, 2021, 42(11): 41-45.
[5] 杨慧剑, 孟亮. 基于改进的YOLOv5的航拍图像中小目标检测算法[J]. 计算机工程与科学, 2023, 45(6): 1063-1070.
Yang Hui-jian, Meng Liang. A small target detection algorithm based on improved YOLOv5 in aerial image[J]. Computer Engineering & Science, 2023, 45(6): 1063-1070.
[6] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[7] Singh B, Davis L S. An analysis of scale invariance in object detection-SNIP[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018:3578-3587.
[8] Zhang S, Zhu X, Lei Z, et al. Faceboxes:a CPU real-time face detector with high accuracy[C]∥IEEE International Joint Conference on Biometrics, Denver, USA, 2017: 1-9.
[9] 王建中, 王加乐, 于子博, 等. 士兵和装甲车目标多尺度检测方法[J]. 北京理工大学学报, 2023, 43(2): 203-212.
Wang Jian-zhong, Wang Jia-le, Yu Zi-bo, et al. Multi-scale detection method for soldier and armored vehicle objects[J]. Transactions of Beijing Institute of Technology, 2023, 43(2): 203-212.
[10] 谌雨章, 黄逸姿, 张钧涵. 基于多速率空洞卷积的多尺度水下小目标检测[J]. 计算机工程, 2023, 49(6): 257-264.
Chen Yu-zhang, Huang Yi-zi, Zhang Jun-han. Multi-scale underwater small object detection based on multi-rate dilated convolution[J]. Computer Engineering, 2023, 49(6): 257-264.
[11] 李成豪, 张静, 胡莉, 等. 基于多尺度感受野融合的小目标检测算法[J]. 计算机工程与应用, 2022, 58(12): 177-182.
Li Cheng-hao, Zhang Jing, Hu Li, et al. Small object detection algorithm based on multiscale receptive field fusion[J]. Computer Engineering and Applications, 2022, 58(12): 177-182.
[12] 董亚盼, 高陈强, 谌放, 等. 基于注意力机制的红外小目标检测方法[J]. 重庆邮电大学学报: 自然科学版, 2023, 35(2): 219-226.
Dong Ya-pan, Gao Chen-qiang, Chen Fang, et al. Infrared small target detection method based on attention mechanism[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(2): 219-226.
[13] Qu J S, Su C, Zhang Z W, et al. Dilated convolution and feature fusion SSD network for small object detection in remote sensing images[J]. IEEE Access, 2020, 8: 82832-82843.
[14] Li K, Cheng G, Bu S, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(4): 2337-2348.
[15] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779-788.
[16] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517-6525.
[17] Redmon J, Farhadi A. YOLOv3: an incremental improvement[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018:1-6.
[18] Bochkovskiy A, Wang C Y, Liao H. YOLOv4: optimal speed and accuracy of object detection[DB/OL].[2023-06-05].
[19] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759-8768.
[20] Ma N, Zhang X, Zheng H T, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 116-131.
[21] Yu C, Gao C, Wang J, et al. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129: 3051-3068.
[22] 陈奎, 刘晓, 贾立娇, 等. 基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测[J].高压技术,2024(3):1289-1300.
Chen Kui, Liu Xiao, Jia Li-jiao, et al. Insulator defect detection based on lightweight network and enhanced multi-scale feature fusion[J].高压技术,2024(3):1289-1300.
[23] Tan M, Pang R, Le A V. EfficientDet: scalable and efficient object detection[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020:10778-10787.
[24] 高新波, 莫梦竟成, 汪海涛, 等. 小目标检测研究进展[J]. 数据采集与处理, 2021, 36(3):391-417.
Gao Xin-bo, Jing-cheng Momeng, Wang Hai-tao, et al. Recent advances in small object detection[J]. Journal of Data Acquisition and Processing, 2021, 36(3):391-417.
[25] Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition Honolulu, USA, 2017: 2117-2125.
[26] Song G, Liu Y, Wang X. Revisiting the sibling head in object detector[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11560-11569.
[27] Ge Z, Liu S, Wang F, et al. YOLOX: exceeding YOLO series in 2021[DB/OL]. [2023-06-10].
[28] Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[29] 徐慧智, 宋爱秋, 武笑宇. 基于均匀设计的船舶目标检测深度学习模型训练方法[J]. 科学技术与工程, 2022, 22(25): 11241-11249.
Xu Hui-zhi, Song Ai-qiu, Wu Xiao-yu. Training method of deep learning to ship target detection based on uniform design[J]. Science Technology and Engineering, 2022, 22(25) : 11241-11249.
[30] 冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法[J]. 航空学报, 2023, 44(5): 273-283.
Mao Guo-tao, Deng Tian-min, Yu Nan-jing. Object detection in UAV images based on multiscale split attention[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 273-283.
[1] Qing-ling HE,Yu-long PEI,Lin HOU,Jing LIU,Sheng PAN. Hybrid strategy improves WOA⁃BiLSTM speed prediction of expressway exit ramp [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2038-2049.
[2] Ru-bo ZHANG,Shi-qi CHANG,Tian-yi ZHANG. Review on image information hiding methods based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1497-1515.
[3] Jian LI,Huan LIU,Yan-qiu LI,Hai-rui WANG,Lu GUAN,Chang-yi LIAO. Image recognition research on optimizing ResNet-18 model based on THGS algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1629-1637.
[4] Li TIAN,Yu-hui JIA. Improved YOLOv5s algorithm for target detection in hyperspectral remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1742-1748.
[5] Bin WEN,Yi-fu DING,Chao YANG,Yan-jun SHEN,Hui LI. Self-selected architecture network for traffic sign classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1705-1713.
[6] Xiang-hai MENG,Guo-rui WANG,Ming-yang ZHANG,Bi-jiang TIAN. Traffic accident prediction model of mountain highways based on selection integration [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1298-1306.
[7] Zhen-jiang LI,Li WAN,Shi-rui ZHOU,Chu-qing TAO,Wei WEI. Dynamic estimation of operational risk of tunnel traffic flow based on spatial-temporal Transformer network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1336-1345.
[8] Wen-jing WU,Chun-chun DENG,Hong-fei JIA,Shu-hang SUN. Evaluation of road network unblocked reliability and identification of critical sections under influence of flooding [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1250-1257.
[9] Hao YUE,Xiao CHANG,Jian-ye LIU,Qiu-shi QU. Customized bus route optimization with vehicle window [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1266-1274.
[10] Li-min ZHENG,Shuang CHEN,Gang LI. Multiple object detection of violated vehicles in traffic surveillance video based on YOLOv5 network algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 693-699.
[11] Meng-xue ZHAO,Xiang-jiu CHE,Huan XU,Quan-le LIU. A method for generating proposals of medical image based on prior knowledge optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 722-730.
[12] Shu-hong MA,Jun-jie ZHANG,Xi-fang CHEN,Guo-mei LIAO. Identifying urban functional structures using time-series taxi data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 603-613.
[13] Tian-yang GAO,Da-wei HU,Rui-sen JIANG,Xue WU,Hui-tian LIU. Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 537-545.
[14] Hua CAI,Yan-yang ZHENG,Qiang FU,Sheng-yu WANG,Wei-gang WANG,Zhi-yong MA. Three-dimensional object detection algorithm based on multi-scale candidate fusion and optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 709-721.
[15] Yu-ran LI,Fei WANG,Cai-hua ZHU,Fei HAN,Yan LI. Chain-effect utility of factors influencing residents' commuting mode choice in polluted weather [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 577-590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Tang Xin-xing,Zhao Ding-xuan,Huang Hai-dong,Ai Xue-zhong,Feng Shi-zhu . Modified stereo vision calibration method for construction robot
[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .
[2] Pan Guan-yu,Liu Da-you,Dou Quan-sheng,Liu Xiao-hua . Convergence property and parametersselection strategy base on differential evolution of PSO[J]. 吉林大学学报(工学版), 2007, 37(04): 842 -845 .
[3] Zhao Yan-ju; Wang Tai-yong; Xu Yue;Cao Kang-ping; Zhang Pan; Deng Hui. Development of portable fault diagnosis instrument based on dual CPU[J]. 吉林大学学报(工学版), 2008, 38(03): 557 -0560 .
[4] Li Hong-ping,Pei Yu-long,Yang Zhong-liang . Factors influencing free flow speed on expressway[J]. 吉林大学学报(工学版), 2007, 37(04): 772 -776 .
[5] Li Jia-fei,Liu Da-you,Yu Wan-jun . Process mining algorithm to discover duplicate tasks[J]. 吉林大学学报(工学版), 2007, 37(01): 106 -110 .
[6] Xie Zhe-dong,Zhao Ji,Zhang Lei . Dynamics simulation and kinematic experiment of small polishing robot[J]. 吉林大学学报(工学版), 2008, 38(02): 349 -0353 .
[7] Liu Xiao-li,Fang Jian-yong,Jiang Man,Li Zhi-ying,Liu Feng-qi . Isothermal crystallization kinetics of MPStremolite/nylon 1010 composites[J]. 吉林大学学报(工学版), 2008, 38(02): 298 -0302 .
[8] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[9] YU Guofei ,KONG Dewen ,MA Shize ,WU Guangqiang. Vehicle Steering Stability Researched by Redeveloped[J]. 吉林大学学报(工学版), 2005, 35(06): 582 -0586 .
[10] DAI Lei-lei, JIANG Gui-yan,PEI Yu-long . Prediction of queue length at saturate signalized intersection[J]. 吉林大学学报(工学版), 2008, 38(06): 1287 -1290 .