Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3614-3622.doi: 10.13229/j.cnki.jdxbgxb.20240125

Previous Articles    

Driving risk assessment method of heavy goods vehicle drivers in plateau and mountainous areas

Wen-wen QIN1(),Jin-yan ZANG1,Qi-yang YAN2,Yun-gui LIU1,Zhen YANG1(),Yun-peng WU1   

  1. 1.Faculty of Transportation Engineering,Kunming University of Science and Technology,Kunming 650504,China
    2.Chongqing Top-Tech Information Co. ,Ltd. ,Chongqing 400000,China
  • Received:2024-01-30 Online:2025-11-01 Published:2026-02-03
  • Contact: Zhen YANG E-mail:qinww@kust.edu.cn;20230114@kust.edu.cn

Abstract:

To construct a driving risk assessment system for heavy goods vehicle drivers with good generalization and interpretability, based on trajectory data from heavy goods vehicle in Yunnan Province, this paper establishes driving risk assessment indicators covering driving style risk, fatigue risk, and driving environment risk. It then uses Pearson correlation analysis to select 43 key indicators from the initial set of driving risk assessment indicators. Lastly, by applying the CRITIC (criteria importance though intercriteria correlation) empowerment method to determine characteristic weights of various indicators, it proposes a method for assessing the driving risk of heavy goods vehicle drivers. The findings indicate that approximately 82.16% of drivers have driving style risk scores below 30 points, suggesting that the majority of heavy goods vehicle drivers in high-altitude mountainous areas have low risk assessment values. The fatigue risk assessment reveals that 42.3% of samples score below 12 points, indicating that heavy goods vehicle drivers in Yunnan Province engage less frequently in long-distance transportation, with fewer instances of continuous long-duration driving. The driving environment risk assessment is most densely distributed in the 15 to 35 points range, accounting for 75.46%, which suggests that cargo transportation mainly depends on riskier arterial roads.

Key words: traffic safety, heavy goods vehicle, quantifying driving risks, empowerment method, correlation analysis

CLC Number: 

  • X951

Table 1

Example of heavy goods vehicle trajectory data"

车辆编号经度纬度时间戳速度/(0.1 km·h-1方向角/(°)
8999****00102.859 27824.959 2962019/3/1 0:00:09721277
8999****00102.858 67724.959 3552019/3/1 0:00:12734276
8999****00102.857 25624.959 4632019/3/1 0:00:19737274
8999****00102.856 66524.959 5122019/3/1 0:00:22712275

Fig.1

Statistics of sampling interval of heavy goods vehicle trajectory data sampling interval"

Table 2

Sample data after data processing"

车辆编号经度纬度时间戳瞬时速度方向角

超速

行驶

疲劳行驶碰撞报警

所属

州市

所属

区县

道路类型道路名称
8999****00102.85927824.9592962019/3/1 0:00:09721277NANpilaoNAN昆明市呈贡区高速公路汕昆高速
8999****00102.85867724.9593552019/3/1 0:00:12734276NANpilaoNAN昆明市呈贡区高速公路汕昆高速
8999****00102.85725624.9594632019/3/1 0:00:19737274NANpilaoNAN昆明市呈贡区高速公路汕昆高速
8999****00102.85666524.9595122019/3/1 0:00:22712275NANpilaoNAN昆明市呈贡区高速公路汕昆高速

Fig.2

Flow chart of quantitative assessment of driving risk of heavy goods vehicle drivers"

Table 3

Characteristic indicators for driving risk assessment"

类型指标项
驾驶风格风险指标高速平均速度高速75分位速度高速平均最大速度
高速超速驾驶里程高速超速驾驶里程比例高速迫近驾驶里程比例
国道最大速度国道75分位速度国道超速驾驶里程
国道迫近驾驶里程国道超速驾驶里程比例国道迫近驾驶里程比例
省道最大速度省道75分位速度省道超速驾驶里程
省道迫近驾驶里程省道超速驾驶里程比例省道迫近驾驶里程比例
县道最大速度县道75分位速度县道超速驾驶里程
县道超速驾驶里程比例县道迫近驾驶里程比例
乡道最大速度乡道75分位速度乡道超速驾驶里程
乡道超速驾驶里程比例乡道迫近驾驶里程比例
其他平均最大速度其他超速驾驶里程其他超速驾驶里程比例
其他迫近驾驶时间比例其他迫近驾驶里程比例
疲劳风险指标平均行程子链时长疲劳驾驶时长比例疲劳行驶次数
驾驶环境风险指标疲劳高发道路驾驶里程碰撞报警高发道路驾驶时长高峰驾驶里程
疲劳高发道路驾驶时长比例碰撞报警高发道路驾驶里程比例深夜驾驶里程比例
高峰驾驶里程比例

Table 4

Characteristic weight of driving style risk under different road types"

特 征冲突性变异性信息量权重
高速平均速度3.2330.1770.5710.233
高速75分位速度2.9560.1430.4230.173
高速平均最大速度3.1870.1680.5370.219
高速超速驾驶里程3.1140.1000.3110.127
高速超速驾驶里程比例3.3940.1210.4100.168
高速迫近驾驶里程比例4.6700.0420.1960.080
国道最大速度3.4330.1340.4590.229
国道75分位速度3.2180.1480.4750.238
国道超速驾驶里程3.3190.0800.2640.132
国道迫近驾驶里程4.3410.0320.1400.070
国道超速驾驶里程比例3.1830.1340.4260.213
国道迫近驾驶里程比例4.2650.0550.2360.118
省道最大速度3.4950.1440.5030.277
省道75分位速度3.4890.1350.4700.259
省道超速驾驶里程3.4180.0470.1600.088
省道迫近驾驶里程4.2900.0350.1480.082
省道超速驾驶里程比例3.2130.0920.2960.163
省道迫近驾驶里程比例4.2230.0570.2400.132
县道最大速度2.6200.1360.3570.270
县道75分位速度2.7810.1500.4180.316
县道超速驾驶里程2.6680.0470.1260.095
县道超速驾驶里程比例2.6450.1000.2660.200
县道迫近驾驶里程比例3.7970.0410.1570.119
乡道最大速度2.2130.1610.3560.247
乡道75分位速度2.0950.1900.3980.276
乡道超速驾驶里程2.3830.0670.1580.110
乡道超速驾驶里程比例1.9430.1730.3360.233
乡道迫近驾驶里程比例3.9360.0490.1920.133
其他平均最大速度3.1050.1580.4900.369
其他超速驾驶里程2.8650.0770.2190.165
其他超速驾驶里程比例2.8540.1320.3760.283
其他迫近驾驶时间比例3.3300.0430.1430.108
其他迫近驾驶里程比例3.3210.0300.1010.076

Table 5

Characteristic weight of fatigue risk"

特 征冲突性变异性信息量权重
平均行程子链时长1.3680.1210.1660.413
疲劳驾驶时长比例0.9890.0920.0910.228
疲劳行驶次数0.9300.1550.1440.359

Table 6

Characteristic weight of driving environment risk"

特 征冲突性变异性信息量权重
疲劳高发道路驾驶里程3.8910.1390.5400.092
碰撞报警高发道路驾驶时长3.6900.1600.5920.101
高峰驾驶里程4.9050.1610.7920.135
疲劳高发道路驾驶时长比例4.5770.1020.4690.080
碰撞报警高发道路驾驶里程比例3.9050.2611.0180.174
深夜驾驶里程比例7.0510.1811.2770.218
高峰驾驶里程比例6.2870.1861.1680.199

Fig.3

Probability distribution of driving style risk assessment value"

Fig.4

Overall distribution of fatigue risk assessment value"

Fig.5

Overall distribution of driving environment risk assessment value"

[1] 张旭欣, 王雪松, 马勇, 等. 驾驶行为与驾驶风险国际研究进展[J]. 中国公路学报, 2020, 33(6): 1-17.
Zhang Xu-xin, Wang Xue-song, Ma Yong, et al. International research progress on driving behavior and driving risks[J]. China Journal of Highway and Transport, 2020, 33(6): 1-17.
[2] Gsul M, 胡予红, 周旋, 等. 道路交通运输安全发展报告(2017)[J]. 中国应急管理, 2018, 12(2): 48-58.
Gsul M, Hu Yu-hong, Zhou Xuan, et al. Road traffic safetydevelopment report(2017)[J]. China Emergency Management, 2018, 12(2): 48-58.
[3] Petridou E, Moustaki M. Human factors in the causation of road traffic crashes[J]. European Journal of Epidemiology, 2000, 16(9): 819-826.
[4] Cho S H, Kim D K, Kho S Y. Latent factors of severity in truck-involved and non-truck-involved crashes on freeways[J]. International Journal of Transport and Vehicle Engineering, 2017, 11(7): 920-927.
[5] 牛世峰, 李贵强, 张士伟. 卫星定位数据驱动的营运车辆驾驶人驾驶风险评估模型[J]. 中国公路学报, 2020, 33(6): 202-211.
Niu Shi-feng, Li Gui-qiang, Zhang Shi-wei. Driving risk assessment model of commercial drivers based on satellite-positioning data[J]. China Journal of Highway and Transport, 2020, 33(6): 202-211.
[6] 韩万里. 重型货车驾驶员驾驶行为特征及安全风险研究[D]. 西安: 长安大学汽车学院, 2021.
Han Wan-li. Study on driving behavior characteristics and safety risk of heavy truck drivers[D]. Xi'an: School of Automobile, Chang'an University, 2021.
[7] Niu S, Ukkusuri S V. Risk assessment of commercial dangerous-goods truck drivers using geo-location data: a case study in china[J]. Accident Analysis & Prevention, 2020, 137: 1-14.
[8] Hyun K K, Jeong K, Tok A, et al. Assessing crash risk considering vehicle interactions with trucks using point detector data[J]. Accident Analysis & Prevention, 2019, 130: 75-83.
[9] 孙川, 吴超仲, 褚端峰, 等. 基于车联网数据挖掘的营运车辆驾驶速度行为聚类研究[J]. 交通运输系统工程与信息, 2015, 15(6): 82-87.
Sun Chuan, Wu Chao-zhong, Chu Duan-feng, et al. Driving speed behavior clustering for commercial vehicle based on connected vehicle data mining[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 82-87.
[10] 王海星, 王翔宇, 王招贤, 等. 基于数据挖掘的危险货物运输风险驾驶行为聚类分析[J]. 交通运输系统工程与信息, 2020, 20(1): 183-189.
Wang Hai-xing, Wang Xiang-yu, Wang Zhao-xian, et al. Dangerous driving behavior clustering analysis for hazardous materials transportation based on data mining[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 183-189.
[11] Wei C H, Lee Y, Luo Y W, et al. Incorporating personality traits to assess the risk level of aberrant driving behaviors for truck drivers[J]. International Journal of Environmental Research and Public Health, 2021, 18(9): 1-18.
[12] Yuan Y, Yang M, Guo Y, et al. Risk factors associated with truck-involved fatal crash severity: analyzing their impact for different groups of truck drivers[J]. Journal of Safety Research, 2021, 76: 154-165.
[13] Chen F, Zhu Y, Zu J, et al. Appraising road safety attainment by critic-electre-fcm: a policymaking support for southeast asia[J]. Transport policy, 2022, 122: 104-118.
[14] Zhou T, Zhang J. Analysis of commercial truck drivers' potentially dangerous driving behaviors based on 11-month digital tachograph data and multilevel modeling approach[J]. Accident Analysis & Prevention, 2019, 132: 1-11.
[15] Zhu Y, Ma Y, Chen S, et al. Identifying potentially risky intersections for heavy-duty truck drivers based on individual driving styles[J]. Applied Sciences, 2022, 12(9): 1-21.
[16] 徐婷, 张香, 张亚坤, 等. 基于AdaBoost算法的货车驾驶人安全倾向性分类[J]. 安全与环境学报, 2019, 19(4): 1273-1281.
Xu Ting, Zhang Xiang, Zhang Ya-kun, et al. Truck driver safety tendency classification based on the AdaBoost algorithm[J]. Journal of Safety and Environment, 2019, 19(4): 1273-1281.
[17] 郑留洋. 基于车联网数据的货车出行风险画像与影响因素分析[D]. 北京: 北京交通大学交通运输学院, 2019.
Zheng Liu-yang. Truck's risk assessment and influencing factors based on vehicular networking data[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2019.
[18] 覃文文, 鄢祺阳, 谷金晶, 等. 重载货车驾驶人驾驶风格识别与量化研究[J]. 交通运输系统工程与信息, 2022, 22(4): 137-148.
Qin Wen-wen, Yan Qi-yang, Gu Jin-jing, et al. Driving style recognition and quantification for heavy-duty truck drivers[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 137-148.
[1] Hang ZHANG,Yu SUN,Bao-lin MA,Shi-hao NIU,Xing-yue WANG,Neng-chao LYU. Reliability-based design of length for auxiliary lane at dual-lane highway exits [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2611-2618.
[2] Chang-zhao LIU,Jian SONG,Zheng-qi LI,Tie ZHANG,Lei WANG. Multi-objective optimization of high-speed thin-walled gears considering dynamic performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2487-2500.
[3] Yan-yan QIN,Teng-fei XIAO,Qin-zhong LUO,Bao-jie WANG. Car-following safety analysis and control strategy for foggy freeway [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1241-1249.
[4] Zhen-jiang LI,Li WAN,Shi-rui ZHOU,Chu-qing TAO,Wei WEI. Dynamic estimation of operational risk of tunnel traffic flow based on spatial-temporal Transformer network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1336-1345.
[5] Hui-chao ZHAO,Yao-dong LIU,Ming-li LIU,Yan-feng GONG,Xian LI,Chuan ZHAO,Ping SUN. Analysis of hydrocarbon emissions from gasoline engines based on spearman correlation and three⁃dimensional numerical calculation of combustion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 829-838.
[6] Jun-jie LIU,Jia-yi Dong,Yong YANG,Dan LIU,Fu-heng QU,Yan-chang LYU. Analysis of factors associated with online learning performance of students based on HM-OLS stepwise regression model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3755-3762.
[7] Bing HUI,Wei LIU,Yu-kun ZHOU,Shu-qi LI. Simulation on driving safety of bridge /tunnel connecting section of expressway under strong crosswind [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2312-2320.
[8] Jin XU,Yan-peng WANG,Hai-yuan CHEN,Xiao-bo ZHANG,Cun-shu PAN. Longitudinal driving characteristics and operating speed prediction model of cars on hairpin curves of mountainous roads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3432-3445.
[9] Qian CAO,Zhi-hui LI,Peng-fei TAO,Yong-jian MA,Chen-xi YANG. Traffic accident risk assessment method for road network considering risk heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2817-2825.
[10] Xin ZHANG,Wei-hua ZHANG. Safety analysis of main line under different traffic conditions in expressway confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1308-1314.
[11] Bo XU,Chuan-xi LI. Detection method of bearing capacity of long-span concrete-filled steel tubular arch bridge based on grey theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2360-2366.
[12] Shu-wei ZHANG,Zhong-yin GUO,Zhen YANG,Ben-min LIU. Application of multi⁃fractal features of driving performance in driver fatigue detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 557-564.
[13] Ping WAN,Chao-zhong WU,Xiao-feng MA. Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 121-131.
[14] WANG Hai-wei, WEN Hui-ying, LIU Min. Experimental evaluation of nighttime driver's physiological characteristics in driving simulator [J]. 吉林大学学报(工学版), 2017, 47(2): 420-428.
[15] CHEN Xin, HU Cui-song, NING Hou-yu, WU Yuan-qiang, WANG Shuo, YANG Chang-hai. Implicit parameterization modeling and multi-performance lightweight optimization for SVU body-in-white [J]. 吉林大学学报(工学版), 2016, 46(6): 1780-1785.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!