Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1336-1345.doi: 10.13229/j.cnki.jdxbgxb.20230689

Previous Articles     Next Articles

Dynamic estimation of operational risk of tunnel traffic flow based on spatial-temporal Transformer network

Zhen-jiang LI1(),Li WAN1,Shi-rui ZHOU2,Chu-qing TAO1,Wei WEI2()   

  1. 1.Tunnel and Underground Engineering Design Branch,Shandong Provincial Communications Planning and Design Institute Group Company Limited,Jinan 250000,China
    2.College of Transportation,Jilin University,Changchun 130022,China
  • Received:2023-06-01 Online:2025-04-01 Published:2025-06-19
  • Contact: Wei WEI E-mail:jnlzj@163.com;weiwei@jlu.edu.cn

Abstract:

To promptly detect, evaluate, and address potential traffic risks in highway tunnels, ensuring the safe and efficient operation of tunnels, a dynamic estimation method for tunnel operational risk states was proposed based on spatial-temporal Transformer network. Tunnel traffic flow holographic detection and key cross-section aggregation information as inputs was utilized, the spatial convolution and temporal LSTM was employed by proposed model for unsupervised extraction of spatiotemporal distribution features of different tunnel traffic operational states. Through extensive sample training of Transformer network layer parameters,it aims to capture the distribution and variances of tunnel traffic states in a high-dimensional risk feature space. This facilitates the estimation of operational risk of tunnel traffic flow. The effectiveness of the proposed method is verified by using real tunnel traffic detection data, and the accuracy of tunnel operation risk estimation is about 96%.

Key words: traffic transport engineering, tunnel traffic safety, dynamic evaluation, deep learning, time series convolutional network

CLC Number: 

  • U458

Fig.1

Tunnel safety evaluation framework based on spatial-temporal Transformer network"

Fig.2

CNN-space feature convolution layer structure"

Fig.3

LSTM-sequence feature extraction layer structure"

Fig.4

Transformer risk evaluation layer structure"

Fig.5

Simulation diagram of tunnel risk state"

Table 1

Other parameters setting of deep sequential convolutional network"

相关参数设定值
激活函数σRelu
网络学习率0.001
最大训练次数Ttrain30 000
最小批训练尺寸10
式(13)中分类数3

Table 2

Tunnel risk state evaluation result confusion matrix"

真实类别评估结果
正例反例
正例真正例TP假反例FN
反例假正例FP真反例TN

Fig.6

Confusion matrix of tunnel risk state estimation results under different data utilization conditions"

Table 3

Comparison of tunnel risk state estimation results under different data utilization conditions"

模型精确率召回率F1分数准确率/%
全域数据+时空Transformer0.941 30.931 50.937 793.12
断面数据+时空Transformer0.910 20.898 10.904 290.37
本文方法0.960 30.963 20.964 196.18

Fig.7

Confusion matrix of different tunnel risk state estimation methods(Holographic detection data)"

Table 4

Comparison of tunnel risk state estimation results of different methods(Holographic detection data)"

模型精确率召回率F1分数准确率/%
SVM0.773 20.763 10.771 577.32
XGBoost0.738 70.753 60.752 275.57
CNN+Transformer0.879 80.858 10.868 887.02
LSTM+Transformer0.895 20.905 30.892 490.24
本文方法(全域数据)0.941 30.931 50.937 793.12

Table 5

Comparison of tunnel risk state estimation results of different methods(Key cross-section aggregation data)"

模 型精确率召回率F1分数准确率/%
贝叶斯分类0.798 20.815 40.806 780.57
随机森林0.803 70.821 40.815 481.37
XGBoost0.849 80.868 10.858 886.02
LSTM+Softmax0.836 10.849 80.833 784.24

本文方法

(断面集计数据)

0.910 20.898 10.904 290.37
[1] 周昱. 基于贝叶斯网的高速公路隧道交通事故预测及应急预案研究[D]. 西安:长安大学公路学院, 2018.
Zhou Yu. Research on traffic accident prediction and contingency plan of expressway tunnel based on Bayesian network[D]. Xi'an: Highway School, Chang'an University, 2018.
[2] 牛文静. 高速公路隧道(群)交通流特征研究[D]. 西安: 长安大学公路学院, 2012.
Niu Wen-jing. Research on the traffic flow characteristics of the freeway tunnel (group) [D]. Xi'an: Highway School, Chang'an University, 2012.
[3] Tadaki S, Nishinari K, Kikuchi M, et al. Observation of congested two-lane traffic caused by a tunnel[J]. Journal of the Physical Society of Japan, 2002, 71(9): 2326-2334.
[4] 周林英, 韩静, 赵忠杰. 事件状态下高速公路隧道群的交通流特性分析[J]. 中国科技论文, 2017, 12(7): 839-844.
Zhou Lin-ying, Han Jing, Zhao Zhong-jie. The traffic flow characteristics of highway tunnel groups based on cellular automata under the traffic incidents[J]. China Sciencepaper,2017, 12(7): 839-844.
[5] 倪娜. 山区高速公路隧道密集段交通特性及安全保障技术研究[D]. 西安: 长安大学公路学院, 2017.
Ni Na. Research on traffic characteristics and security assurance technologies of tunnel intensive section in mountainous expressway[D]. Xi'an: Highway School, Chang'an University, 2017.
[6] Tian L L, Jiang J C, Tian L. Safety analysis of traffic flow characteristics of highway tunnel based on artificial intelligence flow net algorithm[J]. Cluster Computing-The Journal of Networks Software Tools and Applications,2019, 22: 573-582.
[7] 李舒涵. 高速公路隧道交通状态判别研究[D]. 西安:长安大学公路学院, 2020.
Li Shu-han. Research on traffic state identification of highway tunnel[D]. Xi'an: Highway School, Chang'an University, 2020.
[8] 张俊儒, 燕波, 龚彦峰. 隧道工程智能监测及信息管理系统的研究现状与展望[J]. 地下空间与工程学报, 2021, 17(2): 567-579.
Zhang Jun-ru, Yan Bo, Gong Yan-feng. Research status and prospects of intelligent monitoring technology and information management system for tunnel engineering[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 567-579.
[9] Lu Y, Liu S, Tian F, et al. Studies and prospects of technologies for monitoring highway tunnel fire[J]. IOP Conference Series Earth and Environmental Science, 2021, 634(1): No.012099.
[10] Zhao Y, Zhang S, Ma C. Application of video detection technology in tunnel traffic safety monitoring system[J]. IPPTA: Quarterly Journal of Indian Pulp and Paper Technical Association, 2018, 30(8): 376-381.
[11] Li S, Zhou Q, Wang K. Video-based tunnel luminance detection[J]. Automation in Construction, 2019, 107(11): No.102900.
[12] 贾磊, 李清勇, 俞浩敏. 基于监控视频的隧道交通冲突预测方法[J]. 北京交通大学学报, 2023, 47(3):61-69.
Jia Lei, Li Qing-yong, Yu Hao-min. Method for predicting traffic conflicts in tunnels based on monitoring videos[J]. Journal of Beijing Jiaotong University, 2023, 47(3): 61-69.
[13] Chen Z, Wen H. Modeling a car-following model with comprehensive safety field in freeway tunnels[J]. Journal of Transportation Engineering Part A-Systems, 2022, 148(7): No.04022040.
[14] 陈丰, 姜茗馨, 朱明, 等. 基于碰撞时间的大流量隧道口追尾隐患概率模型构建[J]. 北京交通大学学报, 2020, 44(6): 90-96.
Chen Feng, Jiang Ming-xin, Zhu Ming, et al. A rear-end collision probability model at heavy-traffic tunnel entrance based on time-to-collision[J], Journal of Beijing Jiaotong University, 2020, 44(6): 90-96.
[15] 陈娟娟. 公路隧道交通安全状态特征选择与评估方法研究[D]. 福州:福州大学土木工程学院, 2014.
Chen Juan-juan. Research on traffic safety status feature selection and evaluation methods of highway tunnel[D]. Fuzhou: School of Civil Engineering, Fuzhou University, 2014.
[16] 王玉婷. 特长隧道交通事故车辆排队长度演变分析与建模[D].重庆: 重庆交通大学交通运输学院, 2022.
Wang Yu-ting. Analysis and modeling of vehicle queuing length evolution by traffic accident of extra-long tunnel [D].Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2022.
[17] 郑凯. 基于多源数据的城市桥隧结合段交通运行风险预测方法研究[D]. 重庆: 重庆交通大学交通运输学院, 2019.
Zheng Kai. Research on traffic operation risk prediction method for urban bridge tunnel combined sections based on multisource data[D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2019.
[18] Tympakianaki A, Koutsopoulos H N, Jenelius E. Anatomy of tunnel congestion: causes and implications for tunnel traffic management[J]. Tunnelling and Underground Space Technology, 2019, 83:498-508.
[19] Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77, 354-377.
[20] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[21] Tay Y, Dehghani M, Bahri D, et al. Efficient transformers: a survey[J]. ACM Computing Surveys, 2022, 55(6): 1-28.
[22] 李海涛. 基于深度学习的交通流运行风险评估方法研究[D]. 长春: 吉林大学交通学院, 2021.
Li Hai-tao. Research on traffic flow operation risk evaluation based on deep learning[D]. Changchun: College of Transportation, Jilin University, 2021.
[23] 李晓璐, 于昕明, 杜崇. 基于权值优化的FCM-MSVM算法及其在高速公路状态判别中的应用[J]. 北京交通大学学报, 2018, 42(4): 72-78, 84.
Li Xiao-lu, Yu Xin-ming, Du Chong. FCM-MSVM algorithm based on weight optimization and its application in state identification of freeway[J]. Journal of Beijing Jiaotong University, 2018, 42(4): 72-78, 84.
[24] 张博. 基于机器学习的交通状态短时预测方法研究[D]. 长春:吉林大学软件学院, 2018.
Zhang Bo. Research on short-term prediction of traffic state based on machine learning[D]. Changchun:College of Software, Jilin University, 2018.
[25] Liu Q, Lu J, Zhao K, et al. Multiple Naïve bayes classifiers ensemble for traffic incident detection[J]. Mathematical Problems in Engineering, 2014(1):No.383671.
[26] 刘擎超, 陆建, 陈淑燕. 基于随机森林的交通事件检测方法设计与分析[J]. 东南大学学报:英文版, 2014, 30(1): 88-95.
Liu Qing-chao, Lu Jian, Chen Shu-yan. Design and analysis of traffic incident detection based on random forest[J]. Journal of Southeast University(English Edition), 2014, 30(1): 88-95.
[1] Jian LI,Huan LIU,Yan-qiu LI,Hai-rui WANG,Lu GUAN,Chang-yi LIAO. Image recognition research on optimizing ResNet-18 model based on THGS algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1629-1637.
[2] Bin WEN,Yi-fu DING,Chao YANG,Yan-jun SHEN,Hui LI. Self-selected architecture network for traffic sign classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1705-1713.
[3] Ru-bo ZHANG,Shi-qi CHANG,Tian-yi ZHANG. Review on image information hiding methods based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1497-1515.
[4] Meng-xue ZHAO,Xiang-jiu CHE,Huan XU,Quan-le LIU. A method for generating proposals of medical image based on prior knowledge optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 722-730.
[5] Yuan-ning LIU,Zi-nan ZANG,Hao ZHANG,Zhen LIU. Deep learning-based method for ribonucleic acid secondary structure prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 297-306.
[6] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
[7] Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645.
[8] Lei ZHANG,Jing JIAO,Bo-xin LI,Yan-jie ZHOU. Large capacity semi structured data extraction algorithm combining machine learning and deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2631-2637.
[9] Bai-you QIAO,Tong WU,Lu YANG,You-wen JIANG. A text sentiment analysis method based on BiGRU and capsule network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2026-2037.
[10] Xin-gang GUO,Ying-chen HE,Chao CHENG. Noise-resistant multistep image super resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2063-2071.
[11] Li-ping ZHANG,Bin-yu LIU,Song LI,Zhong-xiao HAO. Trajectory k nearest neighbor query method based on sparse multi-head attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1756-1766.
[12] Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776.
[13] Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213.
[14] Xiong-fei LI,Zi-xuan SONG,Rui ZHU,Xiao-li ZHANG. Remote sensing change detection model based on multi⁃scale fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 516-523.
[15] Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .