Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 121-131.doi: 10.13229/j.cnki.jdxbgxb20180918

Previous Articles    

Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis

Ping WAN1,2(),Chao-zhong WU2,Xiao-feng MA2()   

  1. 1. School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China
    2. Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan 430063, China
  • Received:2018-09-04 Online:2020-01-01 Published:2020-02-06
  • Contact: Xiao-feng MA E-mail:pingw04@163.com;maxiaofeng@whut.edu.cn

Abstract:

In order to make effective graded warning for road rage, an optimal threshold determination method for discriminating driving anger intensity based on driving behavior features is proposed in this study. Different driving behavior data were acquired in driving states with different anger intensity by conducting timed experiments in busy traffic sections. The steering wheel rotation angel rate (SWRAR), speed of gas pedaling (SGP), and lateral acceleration (LA) were selected as three effective driving behavior features for discriminating different anger intensity by analysis of variance. A method of receiver operating characteristic (ROC) curve analysis was introduced to determine the optimal discrimination thresholds of SWRAR, SGP and LA. For normal state the ranges of the thresholds are 0≤SWRAR<1.8863, 0≤SGP<0.397 4, 0≤LA<0.136 2; for low anger state the ranges are 1.886 3≤SWRAR<2.324 1, 0.397 4≤SGP<0.505 4, 0.136 2≤LA<0.155 9; for moderate anger state the ranges are 2.324 1≤SWRAR<3.083 5, 0.505 4≤SGP<0.614 2, 0.155 9≤LA<0.175 4; and for high anger state the ranges are SWRAR 3.083 5, SGP 0.614 2, LA 0.175 4. The verification performances show that the accuracy of the optimal thresholds for discriminating different anger intensity can reach 79.42%. The results can provide theoretical foundation for developing multilevel warning systems for driving anger based on the optimal discrimination thresholds.

Key words: road engineering, driving anger discrimination, receiver operating characteristic (ROC)curve, driving behavior, traffic safety

CLC Number: 

  • U491

Fig.1

On-road experiment route"

Fig.2

Stimulation events in traffic environment"

Fig.3

Testing car for on-road experiments"

Fig.4

High-definition monitoring camaro system"

Fig.5

Coefficient of correlation between thesubjects′ self?reports and the observer′s evaluation"

Fig.6

Driving anger instances with different intensity"

Table 1

Descriptive statistics of driving behavior features under different anger intensity"

驾驶行为指标 驾驶愤怒强度
SGP/(m?s-1) 0.289(0.124) 0.458(0.171) 0.579(0.211) 0.656(0.247)
SBP/(m?s-1) 0.218(0.062) 0.224(0.066) 0.228(0.068) 0.233(0.071)
SWRAR/[(°)?s-1] 1.316(0.142) 2.083(0.167) 2.658(0.191) 3.404(0.232)
FA/(m?s-2) 0.469(0.121) 0.611(0.169) 0.736(0.197) 0.863(0.221)
LA/(m?s-2) 0.127(0.036) 0.148(0.042) 0.164(0.051) 0.188(0.057)

Table 2

Results of analysis of variances of driving behavior features under different anger intensity"

驾驶行为指标 平方和 df 均方 F 显著性
SGP 组间 32.624 31 3 10.874 77 372.158 39 0.034
组内 51.720 83 1770 0.029 22
总数 84.345 14 1773
SBP 组间 0.046 29 3 0.015 43 3.624 64 0.126
组内 7.534 47 1770 0.004 26
总数 7.580 76 1773
SWRAR 组间 865.531 25 3 288.510 42 10042.519 16 0.028
组内 50.850 13 1770 0.028 73
总数 916.381 38 1773
FA 组间 32.047 02 3 10.682 34 404.607 89 0.083
组内 46.731 02 1770 0.026 40
总数 78.778 04 1773
LA 组间 0.707 95 3 0.235 98 126.299 67 0.042
组内 3.307 14 1770 0.001 87
总数 4.015 09 1773

Fig.7

Schematic diagram of ROC curve system"

Fig.8

ROC curves of SWRAR for discriminating anger level 1, 3 and 5"

Fig.9

ROC curves of SGP for discriminating anger level 1, 3 and 5"

Fig.10

ROC curves of LA for discriminating anger level 1, 3 and 5"

Table 3

Statistical analysis of AUC for indicator SGP, SWRAR and LA for discriminating different anger levels"

愤怒等级 判别指标 AUC Std.Error Asymptotic Sig. 95%置信区间
上限 下限
SWRAR 0.821 9 0.031 4 0.034 0.769 7 0.842 8
等级1 SGP 0.835 4 0.035 1 0.029 0.752 4 0.853 1
LA 0.792 5 0.028 7 0.042 0.704 8 0.821 6
SWRAR 0.831 4 0.039 2 0.039 0.794 3 0.862 5
等级3 SGP 0.852 7 0.042 6 0.023 0.816 7 0.881 3
LA 0.822 7 0.032 4 0.023 0.790 4 0.853 9
SWRAR 0.853 6 0.041 2 0.037 0.810 3 0.884 9
等级5 SGP 0.873 4 0.052 8 0.018 0.821 8 0.904 6
LA 0.824 5 0.037 3 0.046 0.785 4 0.862 7

Table 4

Optimal threshold of indicator SGP,SWRAR and LA for discriminating different anger levels"

愤怒等级 判别指标 TPR FPR 最佳判别阈值
等级1 SWRAR 0.8276 0.2142 1.8863
SGP 0.8043 0.2015 0.3974
LA 0.7625 0.1438 0.1362
等级3 SWRAR 0.7489 0.1632 2.3241
SGP 0.8673 0.2147 0.5054
LA 0.8137 0.1847 0.1559
等级5 SWRAR 0.7827 0.1524 3.0835
SGP 0.8344 0.1781 0.6142
LA 0.7538 0.1395 0.1754

Table 5

Optimal threshold of SWRAR, SGP and LA for discriminating different anger intensity"

驾驶行为指标 正常 低强度愤怒 中强度愤怒 高强度愤怒
anger level<1 1≤anger level<3 3≤anger level<5 anger level≥5
SWRAR [0,1.886 3) [1.886 3,2.324 1) [2.324 1,3.083 5) [3.083 5,+∞)
SGP [0,0.397 4) [0.397 4,0.505 4) [0.505 4,0.614 2) [0.614 2,+∞)
LA [0,0.136 2) [0.136 2,0.155 9) [0.155 9,0.175 4) [0.175 4,+∞)

Fig.11

Discrimination process of driving anger intensity based on thresholds of driving behavior features"

Table 6

Test results for discrimination model of driving anger intensity based on fusion of driving behavior feature %"

愤怒强度 TPR PPA F1 Ac
正常驾驶 84.27 89.65 86.87 79.42
低强度愤怒 75.18 75.83 75.51
中等强度愤怒 78.24 69.39 73.55
高强度愤怒 82.35 73.46 77.65
1 吴超仲,雷虎 . 汽车驾驶愤怒情绪研究现状与展望[J]. 中国安全科学学报, 2010, 20(7): 3-8.
Wu Chao-zhong , Lei Hu . Review on the study of motorists’ driving anger[J]. China Safety Science Journal, 2010, 20(7):3-8.
2 Kotinas I . Traffic safety facts: a compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system[R]. The U.S. National Highway Traffic Safety Administration, 2011.
3 雷虎 . 愤怒情绪下的汽车驾驶行为特征及其对交通安全的影响研究[D]. 武汉: 武汉理工大学智能交通系统研究中心, 2011.
Lei Hu . The characteristics of angry drivingbehaviors and its effects on traffic safety [D]. Wuhan: Intelligent Transport Systems Research Center, Wuhan University of Technology, 2011.
4 Feng Zhong-xiang , Lei Ye-wei , Liu Hong-chao , et al . Driving anger in China: a case study on professional drivers[J]. Transportation Research Part F: Traffic Psychology and Behavior, 2016, 42: 255-266.
5 Dahlen E R , Martin R C , Ragan K , et al . Driving anger, sensation seeking, impulsiveness, and boredom proneness in the prediction of unsafe driving[J]. Accident Analysis and Prevention, 2005, 37(2): 341-348.
6 张迪, 万柏坤, 明东 . 基于生理信号的情绪识别研究进展[J]. 生物医学工程学杂志, 2015, 32(1): 229-234.
Zhang Di , Wan Bai-kun , Ming Dong . Research progress on emotion recognition based on physiological signals[J]. Journal of Biomedical Engineering, 2015, 32(1): 229-234.
7 Paschero M , Vescovo G , Benucci L , et al . Real time classifier for emotion and stress recognition in a vehicle driver[C]∥IEEE International Symposium on Industrial Electronics,Hangzhou,China, 2012: 1690-1695.
8 Kamaruddin N , Wahab A . Driver behavior analysis through speech emotion understanding[C]∥IEEE Intelligent Vehicles Symposium University of California, San Diego, USA, 2010: 238-243.
9 Katsis C D , Goletsis Y , Rigas G , et al . A wearable system for the affective monitoring of car racing drivers during simulated conditions[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(3): 541-551.
10 Rebolledo-Mendez G , Reyes A , Paszkowicz S , et al . Developing a body sensor network to detect emotions during driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1850-1854.
11 Kessous L , Castellano G , Caridakis G . Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis[J]. Journal on Multimodal User Interfaces, 2010, 3(1): 33-48.
12 Cai H , Lin Y , Mourant R . Study on driver emotion in driver-vehicle-environment systems using multiple networked driving simulators[C]∥Driving Simulation Conference, Iowa City, Iowa, America, 2007: 1-8.
13 万平,吴超仲,林英姿,等 . 基于置信规则库的驾驶人愤怒情绪识别模型[J]. 交通运输系统工程与信息, 2015, 15(5): 96-102.
Wan Ping , Wu Chao-zhong , Lin Ying-zi , et al . A recognition model of driving anger based on belief rule base[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 96-102.
14 刘鹏 . 融合面部表情和语音的驾驶员路怒症识别方法研究[D]. 镇江:江苏大学计算机科学与通信工程学院,2017.
Liu Peng . Driver road rage recognition by combining facial expression and speech[D]. Zhenjiang: School of Computer Science and Telecommunication Engineering, Jiangsu University, 2017.
15 Herrero-Fernánde D . Psychometric adaptation of the driving anger expression inventory in a Spanish sample: differences by age and gender[J]. Transportation Research Part F: Psychology and Behavior, 2011, 14(4): 324-329.
16 万平,吴超仲,林英姿,等 . 基于驾驶行为多元时间序列特征的愤怒驾驶状态检测[J]. 吉林大学学报: 工学版, 2017, 47(5): 1426-1435.
Wan Ping , Wu Chao-zhong , Lin Ying-zi , et al . Driving anger detection based on multivariate time series features of driving behaviors[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(5): 1426-1435.
17 Chen Zhi-jun , Wu Chao-zhong , Zhong Ming , et al . Identification of common features of vehicle motion under drowsy/distracted driving a case study in Wuhan China[J]. Accident Analysis and Prevention, 2015, 81: 251-259.
18 陈卫中,倪宗瓒,潘晓平,等 .用ROC曲线确定最佳临界点和可疑值范围[J]. 现代预防医学, 2005, 32(7) : 729-731.
Chen Wei-zhong , Ni Zong-zan , Pan Xiao-ping , et al . Receiver operating characteristic curves to determine the optimal operating point and doubtable value interval[J]. Modern Preventive Medicine, 2005, 32(7): 729-731.
19 Bechtel T , Capineri L , Windsor C , et al . Comparison of ROC curves for landmine detection by holographic radar with roc data from other methods[C]∥IEEE 8th International Workshop on Advanced Ground Penetrating Radar,Florence,Italy,2015:1-4.
[1] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
[2] Yun-long ZHANG,Liu-guang ZHOU,Jing WANG,Chun-li WU,Xiang LYU. Effects of freeze-thaw cycles on mechanical properties of silty sand and subgrade slope stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1531-1538.
[3] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[4] Liang JIANG,Yi HE. Risky driving behavior and influencing factors analysis for electric two⁃wheeler [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1107-1113.
[5] Xiao⁃zhen LI,Jun⁃zhe LIU,Yan⁃hua DAI,Zhi⁃min HE,Ming⁃fang BA,Yu⁃shun LI. Effect of carbonation on nitrite ion distribution in cement paste [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1162-1168.
[6] Tian⁃lai YU,Hai⁃sheng LI,Wei HUANG,Si⁃jia WANG. Shear strengthening of reinforced concrete beam with prestressed steel wire ropes [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1134-1143.
[7] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[8] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[9] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[10] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[11] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[12] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[13] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[14] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[15] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!