Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3604-3613.doi: 10.13229/j.cnki.jdxbgxb.20240126

Previous Articles    

Distance between upstream transition zones of freeway work zone considering automatic cars

Liu YANG1,2(),Hong-hui LI1,2,Wen-fang LI3   

  1. 1.National Engineering Laboratory of Highway Maintenance Technology,Changsha University of Science & Technology,Changsha 410114,China
    2.School of Transportation,Changsha University of Science & Technology,Changsha 410114,China
    3.Huanghe Jiaotong University,Jiaozuo 454950,China
  • Received:2024-01-31 Online:2025-11-01 Published:2026-02-03

Abstract:

When a six-lane freeway closes two adjacent lanes, two upstream transition zones need to be set up. However, the current regulations do not specify the specific value of the distance between the two. Considering the mixing of automatic cars (AC), the problem of the value of this distance is studied. Firstly, the traffic efficiency in the warning zone is defined as the evaluation basis for the upstream transition zone spacing D, and a dynamic comprehensive evaluation function is constructed to classify the traffic efficiency in the warning zone. Secondly, through SUMO software modeling, simulation experiments with different values of D were conducted based on different traffic conditions, such as different traffic volumes V, human-driving truck mixing rate T, and AC penetration rate P, to analyze the changes in traffic efficiency in the warning zone. Then, based on the classification of traffic efficiency, the range of values for D under different traffic conditions is explored through experiments. Finally, analyze the impact of D on the work zone environment and traffic efficiency under different traffic conditions. The simulation experiment shows that the larger the D, the higher the traffic efficiency in the warning zone, and this change is non-linear, with the increase rate slowing down as D increases. As V or T increases, the traffic efficiency in the warning zone decreases, and increasing D is necessary to maintain the same traffic efficiency in the warning zone. As P increases, the traffic efficiency in the warning zone first increases and then decreases. There exists an optimal P that maximizes the traffic efficiency in the warning zone and minimizes D. Compared to taking the minimum value of D, increasing D can reduce CO2 emissions. Under appropriate traffic conditions, increasing D can simultaneously improve the traffic efficiency in warning zone and reduce the average travel time.

Key words: road engineering, work zone, dynamic comprehensive evaluation, freeway, upstream transition zone, automatic cars, traffic flow simulation

CLC Number: 

  • U418

Table 1

Criteria of index for traffic efficiency in warning zone"

等级O/%K/(pcu·km-1·ln-1Vd/(km·h-1L/(s·veh-1·km-1
R1<19<38>25<123
R2[19-25)[38-48)(20-25][123-146)
R3[25-30)[48-56)(15-20][146-173)
R4[30-35)[56-72)(10-15][173-189)
R5≥35≥72≤10≥189

Table 2

Extremum of index for traffic efficiency in warning zone"

极值O/%K/(pcu·km-1·ln-1Vd/(km·h-1L/(s·veh-1·km-1
极大值120080300
极小值0050

Table 3

Level of traffic efficiency in warning zone"

等级评价函数值范围
R1<26.181
R2[26.181,39.694)
R3[39.694,58.440)
R4[58.440,86.678)
R5≥86.678

Fig.1

Lane closure method in work zone"

Table 4

Vehicle parameter calibration"

车型长度/m宽度/m最大速度/(m·s-1加速度/(m·s-2减速度/(m·s-2
AC6.001.8033.333.004.50
HC6.001.8033.333.004.50
HT18.102.5522.220.603.00

Table 5

IDM parameter calibration"

v0/(m?s-1)θ/(m?s-2)d/(m?s-2)s0/ms1/mT/sδ
33.331.402.002.000.001.504.00

Table 6

Krauss model parameter calibration"

vm/(m?s-1)αm/(m?s-2)β/(m?s-2)s/mtr/sεts/s
33.332.604.503.001.500.501.00

Table 7

LC2013 model parameter calibration"

IcKeepRightIcSpeedGainIcStrategic
1.6(封闭内侧和中间车道)1.0(封闭外侧和中间车道)1.80.1

Table 8

Conversion of traffic volumes"

T交通量/(veh·h-1折算交通量/(pcu·h-1·ln-1
0.21 500800
1 600853
1 700907
0.31 500950
1 6001 013
1 7001 077

Fig.2

Evaluation function value of distance between upstream transition zones when T=0.2"

Fig.3

Evaluation function value of distance between upstream transition zones when T=0.3"

Table 9

Range of distance between upstream transition zones when T=0.2"

V/

(veh·h-1

P不同通行效率下的上游过渡区间距取值范围/m
R5R4,R3R2,R1
1 5000.1[200,450)[450,1 375)[1 375,+∞)
0.5[200,225)[225,650)[650,+∞)
0.9[200,+∞)
1.0[200,+∞)
1 6000.1[200,600)[600,1 925)[1 925,+∞)
0.5[200,400)[400,1 200)[1 200,+∞)
0.9[200,300)[300,1 125)[1 125,+∞)
1.0[200,325)[325,1 175)[1 175,+∞)
1 7000.1[200,950)[950,2 425)[2 425,+∞)
0.5[200,725)[725,1 775)[1 775,+∞)
0.9[200,525)[525,1 500)[1 500,+∞)
1.0[200,600)[600,1 600)[1 600,+∞)

Table 10

Range of distance between upstream transition zones when T=0.3"

V/

(veh·h-1

P不同通行效率下的上游过渡区间距取值范围/m
R5R4,R3R2,R1
1 5000.1[200,750)[750,2 025)[2 025,+∞)
0.5[200,475)[475,1 525)[1 525,+∞)
0.9[200,250)[250,1 325)[1 325,+∞)
1.0[200,300)[300,1 375)[1 375,+∞)
1 6000.1[200,1 125)[1 125,2 500)[2 500,+∞)
0.5[200,825)[825,2 000)[2 000,+∞)
0.9[200,725)[725,1 825)[1 825,+∞)
1.0[200,750)[750,1 950)[1 950,+∞)
1 7000.1[200,1 425)[1 425,2 925)[2 925,+∞)
0.5[200,1 100)[1 100,2 450)[2 450,+∞)
0.9[200,950)[950,2 225)[2 225,+∞)
1.0[200,1 025)[1 025,2 275)[2 275,+∞)

Fig.4

CO2 emissions in simulated freeway sections when T=0.2"

Fig.5

CO2 emissions in simulated freeway sections when T=0.3"

Fig.6

Average travel time in simulated freeway sections when T=0.2"

Fig.7

Average travel time in simulated freeway sections when T=0.3"

[1] Raj A, Kumar J A, Bansal P. A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles[J]. Transportation Research Part A: Policy and Practice, 2020, 133: 122-137.
[2] 孟祥海, 张龙钊, 李生龙. 四车道高速公路部分占用超车道交通控制区交通特性及通行能力研究[J]. 交通运输系统工程与信息, 2020, 20(2): 218-224.
Meng Xiang-hai, Zhang Long-zhao, Li Sheng-long. Traffic characteristics and capacity of overtaking lane partly occupied traffic control zone of four-lane freeway[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 218-224.
[3] Algomaiah M, Li Z. Exploring work zone late merge strategies with and without enabling connected vehicles technologies[J]. Transportation Research Interdisciplinary Perspectives, 2021, 9(1): 100316.
[4] 郝嘉田, 吴忠广, 田万利, 等. 高速公路改扩建中央分隔带开口长度通用计算模型构建与验证[J]. 交通运输系统工程与信息, 2023, 23(4): 262-269.
Hao Jia-tian, Wu Zhong-guang, Tian Wan-li, et al. Construction and validation of a general calculation model for the length of the median opening for expressway renovation and expansion project[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 262-269.
[5] Zou H, Zhu S Y, Jiang R X, et al. Traffic conflicts in the lane-switching sections at highway reconstruction zones[J]. Journal of Safety Research, 2023, 84: 280-289.
[6] 李晓虎, 麦乐, 任杰, 等. 高速公路施工区自动车辆行驶轨迹优化方法[J]. 交通信息与安全, 2020, 38(3): 40-47.
Li Xiao-hu, Le Mai, Ren Jie, et al. A trajectory optimization method of automatic vehicles at freeway work zone[J]. Journal of Transport Information and Safety, 2020, 38(3): 40-47.
[7] Abdulsattar H, Mostafizi A, Siam M R K, et al. Measuring the impacts of connected vehicles on travel time reliability in a work zone environment: an agent-based approach[J]. Journal of Intelligent Transportation Systems, 2020, 24: 421-436.
[8] 陈玲娟, 张思琦, 马东方. 施工区混行车流跟驰及换道模型研究[J]. 交通运输系统工程与信息, 2021, 21(2): 58-64.
Chen Ling-juan, Zhang Si-qi, Ma Dong-fang. Car-following and lane-changing behavior of mixed traffic in work area[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 58-64.
[9] Tajalli M, Niroumand R, Hajbabaie A. Distributed cooperative trajectory and lane changing optimization of connected automated vehicles: freeway segments with lane drop[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103761.
[10] 彭余华, 王晓玉, 吕纪娜, 等. 基于服务水平的高速公路养护作业工作区长度确定方法[J]. 中国公路学报, 2016, 29(5): 130-136.
Peng Yu-hua, Wang Xiao-yu, Lv Ji-na, et al. Length determination method for expressway maintenance work zone based on service level[J]. China Journal of Highway and Transport, 2016, 29(5): 130-136.
[11] 姚志洪, 金玉婷, 王思琛, 等. 混入智能网联汽车的交通流稳定性与安全性分析[J]. 中国安全科学学报, 2021, 31(10): 136-143.
Yao Zhi-hong, Jin Yu-ting, Wang Si-chen, et al. Stability and safety analysis on traffic flow mixed with ICV[J]. China Safety Science Journal, 2021, 31(10): 136-143.
[12] Wang L C, Yang M, Li Y, et al. A model of lane-changing intention induced by deceleration frequency in an automatic driving environment[J]. Physica A: Statistical Mechanics and its Applications, 2022, 604:127905.
[13] Li T N, Chen D J, Zhou H, et al. Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments[J]. Transportation Research Part B, 2021, 147: 67-91.
[14] 崔居福, 胡本旭, 夏辉, 等. SUMO平台下多种车辆跟驰模型的仿真对比分析[J]. 重庆大学学报, 2021, 44(7): 43-54.
Cui Ju-fu, Hu Ben-xu, Xia Hui, et al. Comparative analysis of simulation of multi-car-following models under SUMO platform[J]. Journal of Chongqing University, 2021, 44(7): 43-54.
[15] 梁国华, 石权, 李瑞, 等. 高速公路合流区主要参数对自动驾驶车辆的影响[J]. 哈尔滨工业大学学报, 2021, 53(9): 62-68.
Liang Guo-hua, Shi Quan, Li Rui, et al. Impact of main parameters of merging area in highway on autonomous vehicles[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 62-68.
[16] 何巍楠, 刘莹, 孙胜阳, 等. 基于HBEFA的城市交通温室气体排放模型——以北京本地化建模为例[J]. 交通运输系统工程与信息, 2014, 14(4): 222-229.
He Wei-nan, Liu Ying, Sun Sheng-yang, et al. Greenhouse gas emissions model for urban transportation based on HBEFA——the case of beijing localization model[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(4): 222-229.
[17] 杨柳, 王创业, 王梦言, 等. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报: 工学版, 2023, 53(7): 2043-2052.
Yang Liu, Wang Chuang-ye, Wang Meng-yan, et al. Traffic flow characteristics of six-lane freeways with a dedicated lane for automatic cars[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[18] 蔺庆海, 何兆成, 谢俊,等. 基于AVI数据与深度强化学习的城市快速路匝道协调控制方法[J]. 中国公路学报, 2023, 36(10): 224-237.
Lin Qing-hai, He Zhao-cheng, Xie Jun, et al. Urban expressway coordinated ramp metering approach using automatic vehicle identification data and deep reinforcement learning[J]. China Journal of Highway and Transport, 2023, 36(10): 224-237.
[1] Yi ZHANG,Sha-wen CHEN,Yan CHEN,Xiang-yu FAN,Si-qi WANG,Huan WU,Peng-fei JIAO. Dynamic operation and maintenance evaluation and predictive maintenance of mechanical and electrical equipment on highways [J]. Journal of Jilin University(Engineering and Technology Edition), 2026, 56(1): 170-182.
[2] Bo LI,Yuan LIANG,Yun-dong MA,Lu YU. Intelligent monitoring and early warning for freeze⁃thaw instability of high⁃speed railway tunnel portal slopes in cold regions [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(9): 2985-2997.
[3] Ling XU,Xiao-bing WANG,Jie YUAN,Hua-ping REN,Yi-feng HAN,Xi-yong XU. Controlled low strength materials based on silty sand and its properties in narrow backfill zone [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2657-2668.
[4] Yao-gang TIAN,Jing JIANG,Cheng ZHAO,Xiao-min YANG,Jun ZHANG,Kan JIA. Temperature resistance mechanism of high-early-strength cement mortar modified with waterborne epoxy resin [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2203-2211.
[5] Kang YAO,Qiao DONG,Xue-qin CHEN,Bin SHI,Shi-ao YAN,Xiang WANG. Mixed⁃mode mesoscale fracture behavior of concrete based on a phase field regularized cohesive zone model [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2286-2297.
[6] Hong-cheng GE,Zhong-yin GUO,Can-can SONG,Shi-wei WANG. Safety distance between semi-underground hub interchange ramp tunnel exit and secondary diversion points [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2223-2232.
[7] Zhi-you LONG,Zhao-long WAN,Shi DONG,Chao YANG,Xiao-yang LIU. Displacement prediction of highway slope based on variational mode decomposition and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2320-2332.
[8] Wan-feng WEI,Hong-gang ZHANG,Yang-peng ZHANG,Fan YANG,Bo-ming TANG,Ling-yun KONG. Research progress on modification mechanism, preparation and performance of waste rubber powder modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1834-1853.
[9] Zhen YANG,Rui-ping ZHENG,Zhe GONG. Highway infrastructure performance and traffic state prediction on road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1973-1983.
[10] An-shun ZHANG,Wei FU,Jun-hui ZHANG,Feng GAO. Shear properties and stress-strain relationships characterization of Changsha compacted clay [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1604-1616.
[11] Li-ming WANG,Zi-kun SONG,Hui ZHOU,Wen WEI,Hao YUAN. Rheological response and response mechanism of petroleum asphalt treated with ultrasound [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1346-1355.
[12] Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887.
[13] Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898.
[14] Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663.
[15] Teng-fei NIAN,Zhao HAN,Zhi-qiang WEI,Guo-wei WANG,Jin-guo GE,Ping LI. Mesoscopic numerical modeling method of asphalt mix considering aggregate morphology [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 639-652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!