Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (9): 2985-2997.doi: 10.13229/j.cnki.jdxbgxb.20250577

Previous Articles    

Intelligent monitoring and early warning for freeze⁃thaw instability of high⁃speed railway tunnel portal slopes in cold regions

Bo LI1,2(),Yuan LIANG1,Yun-dong MA1,2,Lu YU1,2   

  1. 1.School of Transportation Engineering,Dalian Jiaotong University,Dalian 116028,China
    2.Liaoning Province Engineering Research Center of High-Speed Railway Technology in High Cold Region,Dalian 116028,China
  • Received:2025-06-29 Online:2025-09-01 Published:2025-11-14

Abstract:

Aiming at the freeze-thaw instability risks of high-speed railway tunnel portal slopes in cold regions and the issue of fragmented monitoring data, this paper proposes an intelligent monitoring system integrating multi-source information (including BeiDou positioning, millimeter-wave radar and InSAR) based on a "perception-transmission-analysis-warning" framework. The system constructs three categories of monitoring indicators—structural deformation, environmental disturbance, and abnormal response, and the "point-line-surface-volume" deployment strategy was adopted to achieve multi-dimensional perception of slope conditions. Furthermore, an early warning model incorporating displacement triggering, image verification, and multi-source fusion was developed, alongside a digital platform was developed to achieve risk hierarchical response. The results of engineering validation show that the system has high adaptability during freeze-thaw periods and can effectively identify landslides precursors.

Key words: road engineering, cold region slopes, freeze-thaw cycles, multi-source information fusion, intelligent monitoring and early warning

CLC Number: 

  • U25

Fig.1

Location and topography of the liming tunnel project area"

Table 1

Monitoring index system of the liming tunnel portal slope"

监测类型监测目标监测项目感知装置精度说明
结构变形坡顶、坡面、坡体监测点及对应区域的沉降位移水平位移、垂直位移北斗高精(毫米级)感知单元+北斗CORS站

水平±2.5 mm+0.5 ppm

垂直±3 mm+0.5 ppm

坡体深层土体位移角倾斜位移固定测斜仪±0.05 °
环境扰动感知冻融期水热迁移(温度/含水率)及外部降雨输入,定位冻融相变土体温度土体温度传感器±0.5 ℃
土体含水率土体湿度传感器±1.5% VWC
捕捉外部扰动事件降雨量雨量计≤1%
异常响应边坡坡面特定点状态图像坡面特定点局部变化、防护栅栏状态UWB单元感知模块
实时动态影像监测树木、危岩落石、异物侵限、防护栅栏状态等的实时图像固定式毫米波雷达+角反射器+高清摄像头变形监测精度≤±0.1 mm
边坡局部点状态变化边坡特定区域、特定时间内的坡面稳定状态图像合成孔径雷达(InSAR)精度≤±5 mm/年
定期图像对比分析边坡状态变化高分数据影像图像(监测周期大于InSAR图像监测周期)高分数据影像分析单元图像识别精度≤±1 pixel

Fig.2

3D finite element model for slope"

Fig.3

Potential landslide area map of the slope"

Fig.4

Schematic diagram of monitoring point layout"

Fig.5

Field installation of monitoring devices"

Fig.6

Flow chart of slope safety condition monitoring and early warning system"

Table 2

Classification of early warning levels and response"

预警等级变形阶段位移速率阈值/(mm·d-1寒区特征参数响应机制
四级(绿色)初始变形<0.5地温<-5 ℃,含水率<18%常规监测数据,每日汇总
三级(黄色)等速变形0.5~1.5地温-5~0 ℃,含水率20%~25%平台预警提示,每周现场巡查
二级(橙色)加速变形1.5~2.5地温>0 ℃,裂缝扩展速率<1 mm/d加密监测频次,启动应急值班
一级(红色)加速临滑>2.5地温>5 ℃,裂缝扩展速率>1 mm/d自动声光报警,联动线路封控,人员撤离

Fig.7

Overall system architecture"

Table 3

Critical values of elevation displacement and horizontal displacement of equipment 1—4"

设备名称均值/μ

均方差

(S:σs

均方差(P:σp统计阈值(μ+3σ
1号设备?H0.285.315.2516.13
HD2.862.762.7311.10
2号设备?H-1.486.636.5818.33
HD3.273.263.2313.02
3号设备?H-0.034.494.4313.34
HD1.170.910.903.88
4号设备?H-1.925.965.9115.89

Fig.8

Relationship between displacement and soil temperature variation"

Fig.9

Main interface of slope stability analysis"

Fig.10

Intelligent early warning view function chart"

Fig.11

Early warning alarm diagram"

Fig.12

Regional deformation map of limin tunnel passenger dedicated line"

Fig.13

Variation trend of partial monitoring data"

Fig.14

Equipment #2 monitoring data from February 18~21"

[1] 田四明, 王伟, 刘建友, 等. 寒区铁路隧道防寒抗冻关键技术研究与展望[J]. 隧道建设(中英文), 2024, 44(1): 21-34.
Tian Si-ming, Wang Wei, Liu Jian-you, et al. Research on and prospect of key technologies of frost-proofing and anti-freezing for railway tunnels in cold regions[J]. Tunnel Construction, 2024, 44(1): 21-34.
[2] 宫亚峰, 吴树正, 毕海鹏, 等. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报: 工学版, 2023, 53(8): 2321-2331.
Gong Ya-feng, Wu Shu-zheng, Bi Hai-peng, et al. Temperature field and frost heaving analysis of prefabricated box culvert based on field monitoring[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(8): 2321-2331.
[3] 刘帅, 杨更社, 潘振兴. 冻融环境“三段式”岩质边坡锁固段损伤破坏及灾变机制研究[J]. 岩石力学与工程学报, 2024, 43(11): 2781-2795.
Liu Shuai, Yang Geng-she, Pan Zhen-xing. Study on damage and catastrophic mechanisms of the locked section of a "three-stage" rock slope in a freeze-thaw environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43 (11): 2781-2795.
[4] 周翠英, 陈恒, 朱凤贤. 基于渐进演化的高边坡非线性动力学预警研究[J]. 岩石力学与工程学报,2008(4): 818-824.
Zhou Cui-ying, Chen Heng, Zhu Feng-xian. Research on nonlinear dynamic warning for high slopes based on progressive evolution process[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(4): 818-824.
[5] 李长洪, 肖永刚, 王宇, 等. 高海拔寒区岩质边坡变形破坏机制研究现状及趋势[J]. 工程科学学报,2019, 41(11): 1374-1386.
Li Chang-hong, Xiao Yong-gang, Wang Yu, et al. Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude[J]. Chinese Journal of Engineering, 2019, 41(11): 1374-1386.
[6] 吴浩, 黄创, 张建华, 等. GNSS/GIS集成的露天矿高边坡变形监测系统研究与应用[J]. 武汉大学学报:信息科学版, 2015, 40(5): 706-710.
Wu Hao, Huang Chuang, Zhang Jian-hua, et al. Research and application of GNSS/GIS integrated high slope deformation monitoring system for open pit mines[J]. Geomatics and Information Science of Wuhan University,2015, 40(5): 706-710.
[7] 高海龙, 徐一博, 刘坤, 等. 基于多源数据融合的高速公路路网短时交通流参数实时预测[J]. 吉林大学学报: 工学版, 2024, 54(1): 155-161.
Gao Hai-long, Xu Yi-bo, Liu Kun, et al. High-speed highway road network short-term traffic flow parameters based on multi-source data fusion prediction[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(1): 155-161.
[8] 赵晓康, 胡哲, 张久鹏, 等. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报: 工学版, 2023, 53(6): 1566-1579.
Zhao Xiao-kang, Hu Zhe, Zhang Jiu-peng, et al. Research progress in intelligent monitoring of pavement icing based on optical fiber sensing technology[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1566-1579.
[9] 马仪, 黄组桂, 贾江栋, 等. 基于无人机-卫星遥感升尺度的土壤水分监测模型研究[J]. 农业机械学报,2023, 54(6): 307-318.
Ma Yi, Huang Zu-gui, Jia Jiang-dong, et al. Soil moisture monitoring model based on UAV-satellite remote sensing scale-up[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 307-318.
[10] Maulana F R, Wattimena R K, Sulistianto B. Integrated D-InSAR and ground-based radar for open pit slope stability monitoring and implications for rock mass young's modulus reduction[J]. Journal of Engineering & Technological Sciences, 2023, 55(3): 247-260.
[11] 孙书伟, 刘流, 郑明新, 等. 抚顺西露天矿区边坡灾害多源监测预警系统及工程应用[J]. 岩石力学与工程学报, 2024, 43(5): 1124-1138.
Sun Shu-wei, Liu Liu, Zheng Ming-xin, et al. Slope disaster monitoring and early warning system in Fushun west open pit mine and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(5): 1124-1138.
[12] 任开瑀, 姚鑫, 赵小铭, 等. 基于时序InSAR、 GPS、 影像偏移测量3种监测数据的滑坡失稳破坏预测研究[J]. 岩石力学与工程学报, 2020, 39(S2):3421-3431.
Ren Kai-yu, Yao Xin, Zhao Xiao-ming, et al. Study of landslide failure prediction based on TS-InSAR, GPS and image offset monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3421-3431.
[13] 王瑞. 高速铁路灾害及侵限监测关键技术研究[D]. 北京: 中国铁道科学研究院通信信号研究所, 2022.
Wang Rui. Research on high-speed railway disaster and intrusion monitoring technology[D]. Beijing: Signal & Communication Research Institute, China Academy of Railway Sciences, 2022.
[14] 杨秋菊. 基于模糊理论的多源异构传感器数据融合模型[J]. 吉林大学学报: 工学版, 2024, 54(10): 3058-3063.
Yang Qiu-ju. Multisource heterogeneous sensor data fusion model based on fuzzy theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10): 3058-3063.
[15] 朱俊清, 赵学儒, 马涛, 等. 基于卫星遥感的路域地质灾害监测方法[J]. 吉林大学学报: 工学版, 2023, 53(6): 1861-1872.
Zhu Jun-qing, Zhao Xue-ru, Ma Tao, et al. Monitoring road geological disaster based on satellite remote sensing[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1861-1872.
[16] Hu M, Ren Y, Xiao L Y, et al. Landslide monitoring based on GNSS and automated inclinometer systems and dynamic modeling using SPH: a case study in Qinghai, China[J]. Environmental Earth Sciences, 2024, 83: 170.
[17] Xu Q, Zhao B, Dai K R, et al. Remote sensing for landslide investigations: a progress report from China[J]. Engineering Geology, 2023, 321: No.107156.
[18] 肖自为, 马源, 李金林, 等. 基于过程预警模型的矿山边坡监测系统研究与应用[J]. 地质灾害与环境保护, 2024, 35(4): 91-98.
Xiao Zi-wei, Ma Yuan, Li Jin-lin, et al. Research and application of mine slopes monitoring system based on process warning model[J]. Journal of Geological Hazards and Environment Preservation, 2024, 35(4): 91-98.
[19] 纪伦, 张红菊, 郭宏斌, 等. 北方寒冷地区温度场作用下公路路表形变规律分析[J]. 哈尔滨工业大学学报, 2024, 56(9): 113-123.
Ji Lun, Zhang Hong-ju, Guo Hong-bin, et al. Road deformation characteristics under the action of temperature field in cold regions of North China[J]. Journal of Harbin Institute of Technology, 2024, 25(9): 113-123.
[20] 陈伟明. 基于位移信息的边坡动态监控系统[D]. 成都: 西南交通大学土木工程学院, 2015.
Chen Wei-ming. Slope dynamic monitoring system based on displacement information[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2015.
[21] 马伟斌. 我国寒区铁路隧道冻害机理及防治技术综述与展望[J]. 铁道学报, 2025, 47(6): 196-210.
Ma Wei-bin. Summary and prospect of frost damage mechanism and control technologies of railway tunnels in cold areas in China[J]. Journal of the China Railway Society, 2025, 47(6): 196-210.
[22] 张哲, 付伟, 张军辉, 等. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报: 工学版, 2023, 53(6): 1790-1798.
Zhang Zhe, Fu Wei, Zhang Jun-hui, et al. Long⁃term characterising plastic behavior of thawed subgrade clay under cyclic loads[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1790-1798.
[23] 胡昊. 面向高铁运行环境安全的侵限监测关键技术研究[D]. 北京: 中国铁道科学研究院通信信号研究所, 2022.
Hu Hao. Research on key technologies of intrusion monitoring for high-speed rail running environment safety[D]. Beijing: Signal & Communication Research Institute, China Academy of Railway Sciences, 2022.
[24] .建筑边坡工程设计规范 [S].
[25] .建筑基坑工程监测技术规范 [S].
[1] Ling XU,Xiao-bing WANG,Jie YUAN,Hua-ping REN,Yi-feng HAN,Xi-yong XU. Controlled low strength materials based on silty sand and its properties in narrow backfill zone [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2657-2668.
[2] Yao-gang TIAN,Jing JIANG,Cheng ZHAO,Xiao-min YANG,Jun ZHANG,Kan JIA. Temperature resistance mechanism of high-early-strength cement mortar modified with waterborne epoxy resin [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2203-2211.
[3] Kang YAO,Qiao DONG,Xue-qin CHEN,Bin SHI,Shi-ao YAN,Xiang WANG. Mixed⁃mode mesoscale fracture behavior of concrete based on a phase field regularized cohesive zone model [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2286-2297.
[4] Zhi-you LONG,Zhao-long WAN,Shi DONG,Chao YANG,Xiao-yang LIU. Displacement prediction of highway slope based on variational mode decomposition and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2320-2332.
[5] Wan-feng WEI,Hong-gang ZHANG,Yang-peng ZHANG,Fan YANG,Bo-ming TANG,Ling-yun KONG. Research progress on modification mechanism, preparation and performance of waste rubber powder modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1834-1853.
[6] Zhen YANG,Rui-ping ZHENG,Zhe GONG. Highway infrastructure performance and traffic state prediction on road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1973-1983.
[7] An-shun ZHANG,Wei FU,Jun-hui ZHANG,Feng GAO. Shear properties and stress-strain relationships characterization of Changsha compacted clay [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1604-1616.
[8] Li-ming WANG,Zi-kun SONG,Hui ZHOU,Wen WEI,Hao YUAN. Rheological response and response mechanism of petroleum asphalt treated with ultrasound [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1346-1355.
[9] Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887.
[10] Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898.
[11] Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663.
[12] Teng-fei NIAN,Zhao HAN,Zhi-qiang WEI,Guo-wei WANG,Jin-guo GE,Ping LI. Mesoscopic numerical modeling method of asphalt mix considering aggregate morphology [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 639-652.
[13] Wan-feng WEI,Ling-yun KONG,Wei-an XUAN,Fan YANG,Peng GUO. Review of characteristics of asphalt foaming and moisture sensitivity of warm mix mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 20-35.
[14] Feng-chun GUO,Hai-peng BI,Hai-tao WANG,Shu-zheng WU,Hong-yu YANG. Viscoelastic behavior of carbon nano powder modified asphalt based on time-temperature equivalence [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 221-229.
[15] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!