Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1406-1411.doi: 10.13229/j.cnki.jdxbgxb.20240279

Previous Articles     Next Articles

Spatio temporal fusion detection of abnormal traffic in industrial Internet based on MSE improved BiLSTM network algorithm

Guang CHENG1,2(),Pei-lin LI1   

  1. 1.Beijing Key Laboratory of Information Service Engineering,Beijing Union University,Beijing 100101,China
    2.Frontier Intelligent Technology Research Institute,Beijing Union University,Beijing 100101,China
  • Received:2024-03-22 Online:2025-04-01 Published:2025-06-19

Abstract:

Addressing the issue that the large amounts of data generated by devices during communication transmission are prone to becoming targets for hackers and malicious users, thereby generating abnormal traffic, and that the sparsity of traffic data makes it difficult to capture the associations between global features, which in turn affects the detection effectiveness of abnormal traffic, a spatiotemporal fusion detection method for abnormal traffic in industrial Internet of Things (IoT) based on the improved bidirectional long short-term memory (BiLSTM) neural network algorithm using mean squared error (MSE) is proposed. Firstly,the industrial Internet traffic data is converted into numerical data through the One-Hot coding method, and the SE mechanism in MSE is used to adjust the weight of traffic characteristics to capture the correlation between global characteristics.Secondly,using the forward and backward LSTM of BiLSTM neural network, the spatiotemporal fusion features of network traffic are extracted.Lastly, and the spatio temporal fusion features are input into the softmax classifier to identify traffic and achieve anomaly detection. The experimental results show that when the number of iterations reaches 30, the loss value of the proposed method can reach below 0.4, when the number of iterations reaches 60, both F1 and Matthews correlation coefficients can reach 60, proving that this method has good overall performance.

Key words: multi head squeezing incentive mechanism, BiLSTM neural network, feature fusion, abnormal traffic detection, Softmax classifier

CLC Number: 

  • TP393

Fig.1

MSE structure"

Fig.2

BiLSTM structure"

Table 1

Experimental environment and configuration"

实验环境配 置
Python3.7.6
操作系统Win10 LTSC2019
Tensorflow2.0.0
处理器Intel Core i7-6800K CPU 3.40 GHz
Keras2.3.1
内存16GB PDRP 2666 MHz
显卡GTX 1080Ti

Table 2

Test dataset"

数据集数据量
U2R228
Normal60 560
R2L16 185
DoS229 855
Probe4 165

Fig.3

Loss values of different models"

Fig.4

Abnormal traffic detection results"

1 林广朋, 李闯. 入侵攻击下无线网络安全态势感知算法[J]. 计算机仿真, 2023, 40(12): 451-454, 547.
Lin Guang-peng, Li Chuang. Wireless network security situation awareness algorithm under intrusion attacks[J]. Computer Simulation, 2023, 40(12): 451-454, 547.
2 丁建立, 刘亦舟, 梁婷婷. 基于特征约简与多层极限学习机的网络流量异常检测[J]. 现代电子技术, 2022, 45(5): 84-89.
Ding Jian-li, Liu Yi-zhou, Liang Ting-ting. Network traffic anomaly detection based on feature reduction and multi-layer extreme learning machine[J]. Modern Electronics Technique, 2022, 45(5): 84-89.
3 段雪源, 付钰, 王坤, 等. 基于多尺度特征的网络流量异常检测方法[J]. 通信学报, 2022, 43(10): 65-76.
Duan Xue-yuan, Fu Yu, Wang Kun, et al. Network traffic anomaly detection method based on multi-scale characteristic[J]. Journal on Communications, 2022, 43(10): 65-76.
4 胡向东, 张婷. 基于时空融合深度学习的工业互联网异常流量检测方法[J]. 重庆邮电大学学报: 自然科学版, 2022, 34(6): 1056-1064.
Hu Xiang-dong, Zhang Ting. Abnormal traffic detection method for industrial Internet based on deep learning with time-space fusion[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2022, 34(6): 1056-1064.
5 Bhor H N, Kalla M.TRUST‐based features for detecting the intruders in the Internet of Things network using deep learning[J]. Computational Intelligence, 2022, 38(2): 438-462.
6 宋建辉, 王思宇, 刘砚菊, 等.基于改进FFRCNN网络的无人机地面小目标检测算法[J]. 电光与控制, 2022, 29(7): 69-73, 80.
Song Jian-hui, Wang Si-yu, Liu Yan-ju, et al. Ground small target detection algorithm of UAV based on improved FFRCNN network[J]. Electronics Optics and Control, 2022, 29(7): 69-73, 80.
7 周云, 赵瑜, 郝官旺, 等. 基于应变信号时频分析与CNN网络的车辆荷载识别方法[J]. 湖南大学学报:自然科学版, 2022, 49(1): 21-32.
Zhou Yun, Zhao Yu, Hao Guan-wang, et al. Vehicle load identification method based on time frequency analysis of strain signal and convolutional neural network[J]. Journal of Hunan University(Natural Science Edition), 2022, 49(1): 21-32.
8 程汪刘, 任仰勋, 倪修峰, 等.基于改进Cascade R-CNN网络模型的防振锤缺陷识别[J]. 安徽大学学报:自然科学版, 2022, 46(5): 64-70.
Cheng Wang-liu, Ren Yang-xun, Ni Xiu-feng, et al. Defect recognition of vibration dampers based on improved Cascade R-CNN network model[J]. Journal of Anhui University(Natural Science Edition), 2022, 46(5): 64-70.
9 王得道, 王森荣, 林超, 等.基于CNN-LSTM融合神经网络的CRTSⅡ型轨道板温度预测方法[J].铁道学报, 2023, 45(2): 108-115.
Wang De-dao, Wang Sen-rong, Lin Chao, et al. CRTSⅡtrack slab temperature forecasting method based on CNN-LSTM fusion neural network[J]. Journal of the China Railway Society, 2023,45(2): 108-115.
10 张浩, 胡昌华, 杜党波, 等.多状态影响下基于Bi-LSTM网络的锂电池剩余寿命预测方法[J]. 电子学报, 2022, 50(3): 619-624.
Zhang Hao, Hu Chang-hua, Du Dang-bo, et al. Remaining useful life prediction method of lithium⁃ion battery based on Bi⁃LSTM network under multi⁃state influence[J]. Acta Electronica Sinica, 2022, 50(3): 619-624.
11 刘继, 顾凤云. 基于BERT与BiLSTM混合方法的网络舆情非平衡文本情感分析[J]. 情报杂志, 2022, 41(4): 104-110.
Liu Ji, Gu Feng-yun. Unbalanced text sentiment analysis of network public opinion based on BERT and BiLSTM hybrid method[J]. Journal of Intelligence, 2022, 41(4): 104-110.
12 罗晶, 高永, 梁葆华, 等. 基于CNN-BiLSTM网络模型的无人机飞行质量评价[J]. 工程数学学报,2023, 40(2): 171-189.
Luo Jing, Gao Yong, Liang Bao-hua, et al. UAV flight quality evaluation based on CNN-BiLSTM Network model[J]. Chinese Journal of Engineering Mathematics, 2023, 40(2): 171-189.
13 王继东, 杜冲. 基于Attention-BiLSTM神经网络和气象数据修正的短期负荷预测模型[J]. 电力自动化设备, 2022, 42(4): 172-177, 224.
Wang Ji-dong, Du Chong. Short-term load prediction model based on Attention-BiLSTM neural network and meteorological data correction[J]. Electric Power Automation Equipment, 2022, 42(4): 172-177, 224.
14 封强, 潘保芝, 韩立国. 基于卷积降噪自编码器和Softmax回归的微地震定位方法[J]. 地球物理学报, 2023, 66(7): 3076-3085.
Feng Qiang, Pan Bao-zhi, Han Li-guo. Microseismic source location method based on convolutional denoising auto-encoder and Softmax regression[J]. Chinese Journal of Geophysics, 2023, 66(7): 3076-3085.
15 冯治广, 董佳佳, 王茂英. 基于Softmax的采摘机器人目标识别技术研究[J]. 农机化研究, 2023, 45(2): 184-188.
Feng Zhi-guang, Dong Jia-jia, Wang Mao-ying. Research on target recognition technology of picking robot based on Softmax[J]. Journal of Agricultural Mechanization Research, 2023, 45(2): 184-188.
[1] Hua CAI,Yu-yao WANG,Qiang FU,Zhi-yong MA,Wei-gang WANG,Chen-jie ZHANG. Semantic segmentation network based on attention mechanism and feature fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1384-1395.
[2] He-shan ZHANG,Meng-wei FAN,Xin TAN,Zhan-ji ZHENG,Li-ming KOU,Jin XU. Dense small object vehicle detection in UAV aerial images using improved YOLOX [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1307-1318.
[3] Xue-jun LI,Lin-fei QUAN,Dong-mei LIU,Shu-you YU. Improved Faster⁃RCNN algorithm for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 938-946.
[4] De-qiang CHENG,Gui LIU,Qi-qi KOU,Jian-ying ZHANG,He JIANG. Lightweight image super⁃resolution network based on adaptive large kernel attention fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1015-1027.
[5] Lin MAO,Hong-yang SU,Da-wei YANG. Temporal salient attention siamese tracking network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3327-3337.
[6] Ming-chen GU,Hui-yuan XIONG,Zeng-jun LIU,Qing-yu LUO,Hong LIU. Weight estimation model for trucks integrating multi-head attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2771-2780.
[7] Chun-hua WANG,En-ze LI,Min XIAO. Object detection in high-resolution remote sensing images based on multi-feature fusion and twin attention network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 240-250.
[8] Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457.
[9] Wei-wei LUO,Shao-wei LIU,Bing-tao ZHANG,Meng LI,Hai-luan LIU,Ling-yan FAN. Steganalysis of spatial image combining fusion features and feature mapping [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3260-3267.
[10] Ning OUYANG,Zu-feng LI,Le-ping LIN. Hyperspectral image classification based on hierarchical spatial-spectral fusion network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2438-2446.
[11] Xiao-ying PAN,De WEI,Yi-zhe ZHAO. Detecetion of lung nodule based on mask R-CNN and contextual convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2419-2427.
[12] Da-ke ZHOU,Chao ZHANG,Xin YANG. Self-supervised 3D face reconstruction based on multi-scale feature fusion and dual attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2428-2437.
[13] Hong-wei ZHAO,Dong-sheng HUO,Jie WANG,Xiao-ning LI. Image classification of insect pests based on saliency detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2174-2181.
[14] Hong-song CHEN,Jing-jiu CHEN. Statistical based distributed denial of service attack detection research in internet of things [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1894-1904.
[15] WANG Sheng-sheng, GUO Xu, ZHANG Jia-chen, WANG Guang-yao, ZHAO Xin. Shape recognition algorithm based on fusion of global and local properties [J]. 吉林大学学报(工学版), 2016, 46(5): 1627-1632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .