Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 917-925.doi: 10.13229/j.cnki.jdxbgxb.20220681

Previous Articles     Next Articles

Milling analysis and parameter optimization for TC4 titanium alloy material

Ya-dong GONG(),Ming-xiang DING,Xiang LI,Jin-min TIAN   

  1. School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819
  • Received:2022-06-01 Online:2024-04-01 Published:2024-05-17

Abstract:

In order to investigate the influence of milling parameters on the milling force and material removal rate when machining TC4 titanium alloy material and to find the best combination of parameters, side milling experiments designed based on the orthogonal experimental method were carried out with a four-edged ball-ended milling cutter. Milling speed, feed per tooth, milling depth and milling width were chosen as variables, while milling force and material removal rate were selected as evaluation indicators. The influence laws of machining parameters on milling force and material removal rate, based on the range analysis method, were found out. The grey relational analysis (GRA) and particle swarm optimization (PSO) algorithms were adopted to optimize the milling parameters respectively, meanwhile a milling force prediction model was established based on the regression analysis method to prepare for the PSO. Finally, the two optimization methods were compared and analyzed and the prediction model was verified through the verification experiments. The results show that the prediction model established in this paper can accurately and efficiently predict the milling force, and the optimization effect of PSO is much better.

Key words: mechanical manufacture, titanium alloy, milling force, material removal rate, grey relational analysis, particle swarm optimization

CLC Number: 

  • TH161

Table 1

Chemical composition of TC4 titanium alloy"

元素AlVFeSiCNHOTi
质量分数6.240.30.150.10.050.0150.2余量

Fig.1

Milling experiments"

Table 2

Levels of experimental factors"

水平

铣削速度

vc/m·min-1

每齿进给量

fz/mm·z-1

铣削深度

ap/mm

铣削宽度

ae/mm

1600.012.50.25
2800.0250.50
31000.037.50.75
41200.04101.00

Table 3

Experimental results of orthogonalexperimental design"

实验编号vc/ (m·min-1fz/ (mm·z-1ap/mmae/mmF/NMRR/(mm3·min-1
1600.012.50.2522.62579.58
2600.0250.566.936636.62
3600.037.50.75131.2992148.59
4600.04101196.5735092.96
5800.0150.7561.519636.62
6800.022.5159.103848.82
7800.03100.25115.3671273.24
8800.047.50.5120.8212546.48
91000.017.5179.7051591.55
101000.02100.75121.9173183.10
111000.032.50.579.483795.77
121000.0450.2568.1931061.03
131200.01100.570.0121273.24
141200.027.50.2569.557954.93
151200.035198.0433819.72
161200.042.50.7582.2871909.86

Table 4

Range analysis results of resultant force F"

水平vcfzapae
1104.3658.4760.8768.94
289.2079.3873.6784.31
387.32106.05100.3599.26
479.97116.97125.97108.36
Delta24.3858.5065.0939.42
排秩4213

Fig.2

Influence of various milling parameters on milling resultant force F"

Table 5

Range analysis results of material removal rate"

水平vcfzapae
11989.4895.2908.5842.2
21326.31405.91538.51313.0
31657.92009.31810.41969.5
41989.42652.62705.62838.3
Delta663.11757.31797.11996.1
排秩4321

Fig.3

Influence of various milling parameters on material removal rate(MRR)"

Fig.4

Flow chart of grey relational analysis"

Table 6

Results of data processing"

实验编号信噪比(S/N归一化GRC
FMRRFMRRFMRR
1-27.091 7738.016 08000.333 330.333 33
2-36.513 2056.077 610.501 710.500 000.500 860.500 00
3-42.365 2366.643 070.813 340.792 480.728 160.706 69
4-45.870 4874.139 41111.000 001.000 00
5-35.780 1956.077 610.462 670.500 000.482 010.500 00
6-35.432 1958.576 310.444 140.569 170.473 550.537 15
7-41.241 6362.098 210.753 510.666 660.669 800.600 00
8-41.642 8568.118 810.774 870.833 330.689 530.750 00
9-38.029 7164.036 410.582 470.720 320.544 940.641 29
10-41.721 2970.057 010.779 050.886 990.693 530.815 64
11-38.005 4958.015 750.581 170.553 650.544 170.528 35
12-36.674 8060.514 550.510 310.622 820.505 210.570 01
13-36.903 4562.098 210.522 490.666 660.511 500.600 00
14-36.846 8259.599 430.519 470.597 490.509 930.554 01
15-39.828 3371.640 630.678 240.930 830.608 450.878 47
16-38.306 6265.620 030.597 210.764 160.553 840.679 49

Table 7

Mean values of GRC"

项目FMRR
vcfzapaevcfzapae
水平10.64060.46790.47620.50460.6350.51870.51960.5143
水平20.57870.54450.52410.56150.59680.60170.61210.5946
水平30.57200.63760.61810.61440.638 80.67840.66300.6755
水平40.54590.68710.71870.65670.67800.74990.75390.7642
Rij0.09470.21920.24250.15220.08120.23120.23430.2499
Rij0.70860.7966
wk0.470.53

Table 8

Calculated values of WGRG"

实验编号WGRG排序
10.333 3316
20.500 4014
30.716 785
41.000 001
50.491 5415
60.507 2613
70.632 806
80.721 584
90.596 008
100.758 252
110.535 7811
120.539 5510
130.558 419
140.533 2912
150.751 563
160.620 447

Table 9

Measurement of weighted grey relevance by range method"

铣削参数代号均值加权灰色关联度Δ排序
水平1水平2水平3水平4
vcA0.6376*0.58830.60740.61590.04934
fzB0.49480.57480.65920.7204*0.22562
apC0.49920.57080.64190.7374*0.23821
aeD0.50970.57900.64680.7137*0.20403

Fig.5

Main effect diagram of WGRG"

Fig.6

Comparison of predicted and experimental values of milling force F"

Table 10

ANOVA table for forecasting model"

项目平方和自由度均方F显著性
总计24 145.67315
回归24 124.905131 855.762178.7210.006
残差20.767210.384

Fig.7

Normal P-P plot of regression standardized residuals"

Fig.8

Flow chart of PSO algorithms"

1 Tan Liang, Yao Chang-feng, Ren Jun-xue, et al. Effect of cutter path orientations on cutting forces, tool wear, and surface integrity when ball end milling TC17[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 2589-2602.
2 张翔宇, 路正惠, 彭振龙, 等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报, 2021, 57(5): 133-147.
Zhang Xiang-yu, Lu Zheng-hui, Peng Zhen-long, et al. High quality and efficient ultrasonic vibration cutting of titanium alloys[J]. Journal of Mechanical Engineering, 2021, 57(5): 133-147.
3 Li J, Yang X, Ren C, et al. Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76: 941-953.
4 Serra R, Chibane H, Duchosal A. Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(5-8): 2025-2034.
5 Zhu Li-da, Yang Zhi-chao, Li Zhao-bin. Investigation of mechanics and machinability of titanium alloy thin-walled parts by CBN grinding head[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(9-12): 2537-2555.
6 Wu D, Wang H, Zhang K, et al. Research on formation mechanism and optimization method of surface waviness of TC4 blisk blade[J]. Journal of Manufacturing Processes, 2019, 39: 305-326.
7 Shen X, Zhang D, Yao C, et al. Formation mechanism of surface metamorphic layer and influence rule on milling TC17 titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(7,8): 2259-2276.
8 Ngoc Chien Vu, Chour Huang Shyh, Huu That Nguyen. Multi-objective optimization of surface roughness and cutting forces in hard milling using taguchi and response surface methodology[J]. Key Engineering Materials, 2018, 773: 220-224.
9 Karkalos N E, Galanis N I, Markopoulos A P. Surface roughness prediction for the milling of Ti6Al4V ELI alloy with the use of statistical and soft computing techniques[J]. Measurement, 2016, 90: 25-35.
10 易茜, 李聪波, 潘建, 等. 薄板类零件加工精度可靠性分析及工艺参数优化[J]. 中国机械工程, 2022, 33(11): 1269-1277.
Yi Qian, Li Cong-bo, Pan Jian,et al. Reliability analysis of machining accuracy and processing parameter optimization for thin-plate parts[J]. China Mechanical Engineering, 2022, 33(11): 1269-1277.
11 Monir K O, Samy E A A. Optimization of cutting conditions using regression and genetic algorithm in end milling[J]. International Journal of Engineering Research in Africa, 2016, 20: 12-18.
12 Venkatesh M, Suresh K R N. Optimization of milling operations using artificial neural networks (ANN) and simulated annealing algorithm (SAA)[J]. Materials Today: Proceedings, 2018, 5(2): 4971-4985.
13 Djordje V, Katica S, Zeljko K, et al. Multi-objective optimization of steel AISI 1040 dry turning using genetic algorithm[J]. Neural Computing & Applications, 2021, 33(19): 12445-12475.
14 Eskandari B, Davoodi B, Ghorbani H. Multi-objective optimization of parameters in turning of N-155 iron-nickel-base superalloy using gray relational analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(4): No.233.
15 Maiyar L M, Ramanujam R, Venkatesan K, et al. Optimization of machining parameters for end milling of inconel 718 super alloy using taguchi based grey relational analysis[J]. Procedia Engineering, 2013, 64: 1276-1282.
16 Ic Y T, Yildirim S. MOORA-based taguchi optimisation for improving product or process quality[J]. International Journal of Production Research, 2013, 51(11): 3321-3341.
17 魏子茹, 卢延辉, 王鹏宇, 等. 基于CRITIC法的灰色关联理论在无人驾驶车辆测试评价中的应用[J]. 机械工程学报, 2021, 57(12): 99-108.
Wei Zi-ru, Lu Yan-hui, Wang Peng-yu, et al. Application of grey correlation theory based on CRITIC method in autonomous vehicles test and evaluation[J]. Journal of Mechanical Engineering, 2021, 57(12): 99-108.
18 曾念寅, 宋丹丹, 李寒, 等. 改进鲸鱼优化算法及涡轮盘结构优化[J]. 机械工程学报, 2021, 57(20): 254-265.
Zeng Nian-yin, Song Dan-dan, Li Han, et al. Improved whale optimization algorithm and turbine disk structure optimization[J]. Journal of Mechanical Engineering, 2021, 57(20): 254-265.
19 易茜, 柳淳, 李聪波, 等. 基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J]. 中国机械工程, 2022, 33(13): 1604-1612.
Yi Qian, Liu Chun, Li Cong-bo, et al. A low carbon optimization decision method for gear hobbing process parameters driven by small sample data[J]. China Mechanical Engineering, 2022, 33(13): 1604-1612.
20 卫星驰, 赵嫚, 杨青平, 等. 考虑工件变形的五轴侧铣薄壁件铣削力建模[J]. 机械工程学报, 2022, 58(7): 317-324.
Wei Xing-chi, Zhao Man, Yang Qing-ping, et al. Milling force modeling of thin-walled parts with 5-Axis flank milling considering workpiece deformation[J]. Journal of Mechanical Engineering, 2022, 58(7): 317-324.
21 于繁华, 刘仁云, 张义民, 等. 机械零部件动态可靠性稳健优化设计的群智能算法[J]. 吉林大学学报:工学版, 2017, 47(6): 1903-1908.
Yu Fan-hua, Liu Ren-yun, Zhang Yi-min, et al. Swarm intelligence algorithm of dynamic reliability-based robust optimization design of mechanic components[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1903-1908.
22 张禹, 鹿浩, 吕董, 等. 基于IMOFA的航空发动机管路多目标优化布局[J]. 东北大学学报:自然科学版, 2022, 43(8): 1120-1126.
Zhang Yu, Lu Hao, Dong Lyu, et al. Multi-objective optimization layout of aero-engine pipe routing based on IMOFA[J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1120-1126.
23 陈昭明,邹劲松,王伟,等. 改进粒子群神经网络融合有限元分析的铸锻双控动态成型多目标优化[J]. 吉林大学学报:工学版, 2022, 52(7): 1524-1533.
Chen Zhao-ming, Zou Jin-song, Wang Wei, et al. Multi-objective optimization of casting-forging dynamic forming based on improved particle swarm neural network and finite element analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1524-1533.
[1] Guo-jin TAN,Qing-wen KONG,Xin HE,Pan ZHANG,Run-chao YANG,Yang-jun CHAO,Zhong YANG. Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1592-1600.
[2] Jian WU,Bin XU. Displacement interval prediction model and simulation of accumulation landslide based on ceemdan theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 562-568.
[3] Jie LI,Chang-wang JIA,Qi ZHAO. Solution of nonlinear equilibrium state of vehicle steering and its stability determination [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3326-3334.
[4] Zheng ZHANG,Qi-dan ZHU,Xiao-long LYU,Xing FAN. Optimized method for solving inverse kinematics of redundant manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3379-3387.
[5] Pei-ran YING,Xiao-qing ZENG,Tuo SHEN,Teng-fei YUAN,Hai-feng SONG,Yi-zeng WANG. Redundant operation code-based intelligent algorithm for energy⁃efficient driving of high-speed train [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3404-3414.
[6] Yong-gang CHEN,Ji-ye XU,Hai-yong WANG,Wen-xiang XIONG. Fault diagnosis method of point machine based on adaptive neural fuzzy inference network system [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3274-3280.
[7] Zhi HUANG,Jie MIN,Tao ZHOU,Jian YANG,Li-xing XIAO,Lin-ze LI. Modeling and analysis of grinding force for grinding titanium alloy with abrasive belt assisted by ultrasonic vibration [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3069-3077.
[8] Li HUI,Jia-chen LU,Song ZHOU,Jin-lan AN,Guan-yan ZHOU,Xiao-peng LIU. Effect of heat treatment on fatigue properties of TC4 titanium alloy by laser double beam welded joint [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 105-110.
[9] Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202.
[10] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[11] Ren-chu GUAN,Bao-run HE,Yan-chun LIANG,Xiao-hu SHI. Particle swarm optimization algorithm based on kinship selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1842-1849.
[12] Jing QIN,De ZHENG,Yi-qiang PEI,Yong LYU,Qing-peng SU,Ying-bo WANG. Prediction method of engine performance and emission based on PSO-GPR [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1489-1498.
[13] Zhen WANG,Meng GAI,Heng-shuo XU. Surface reconstruction algorithm of 3D scene image based on virtual reality technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1620-1625.
[14] Hai-yan XING,Chao LIU,Cheng XU,Yu-huan CHEN,Song-hong-ze WANG. Quantitative metal magnetic memory classification model of weld grades based on particle swarm optimization fuzzy C⁃means [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 525-532.
[15] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!