Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1742-1748.doi: 10.13229/j.cnki.jdxbgxb.20240459

Previous Articles     Next Articles

Improved YOLOv5s algorithm for target detection in hyperspectral remote sensing images

Li TIAN(),Yu-hui JIA   

  1. College of Information and Electrical Engineering,Heilongjiang Bayi Agricultural University,Daqing 163319,China
  • Received:2024-04-28 Online:2025-05-01 Published:2025-07-18

Abstract:

The spectral resolution of hyperspectral images is very high, and there are many bands of ground objects, so the spectral difference between the target and the background is very small, which is easy to cause spectral confusion, and the accuracy of target detection is low. Therefore, an image object detection method based on improved YOLOv5s algorithm is proposed. A feature pyramid is established and multi-scale weighting is implemented. The weights between different layers in the feature pyramid are used to weight and fuse the features and introduce them into the attention mechanism. The spectral features of the spatial attention mechanism are output, and the feature value is used as a comparison reference. The hyperspectral image features obtained after calibration are used as the input of the improved YOLOv5s algorithm to effectively distinguish the tiny spectral feature differences in the image, avoid spectral confusion, calculate the overlap area between the detection frame and the real frame according to the central value, complete the target detection, and ensure the detection accuracy. Experiments show that the proposed method has a high accuracy for detecting ground objects in hyperspectral remote sensing images. When detecting 1 057 p pixel images, the frame rate is as high as 60fps, and the comprehensive performance is excellent.

Key words: improving YOLOv5s algorithm, hyperspectral remote sensing images, spatial attention, object detection

CLC Number: 

  • TP123

Fig.1

Multi-scale weighted bidirectional image feature fusion diagram"

Fig.2

Original hyperspectral remote sensing image"

Fig.3

Comparison results of target detection in hyperspectral remote sensing images"

Table 1

Comparison of results based on detection frame rate"

像素大小/p检测帧率/fps
特征增强法增强小目标特征法改进卷积神经网络法

方法

本文

15748.660.660.0120.2
25748.460.848.0120.8
35748.260.248.8120.6
45748.048.248.6120.0
55724.848.448.6100.0
65724.448.248.4100.0
75724.248.048.2100.0
85724.248.048.280.0
95724.048.048.080.0
1 05722.848.248.060.0
[1] 汪西莉, 梁敏, 刘涛. 特征增强的单阶段遥感图像目标检测模型[J]. 西安电子科技大学学报, 2022, 49(3): 160-170.
Wang Xi-li, Liang Min, Liu Tao. Feature enhanced single-stage remote sensing image object detection model[J].Journal of Xidian University,2022,49(3):160-170.
[2] 单慧琳, 王硕洋, 童俊毅, 等. 增强小目标特征的多尺度光学遥感图像目标检测[J]. 光学学报, 2024, 44(6): 0628006.
Shan Hui-lin, Wang Shuo-yang, Tong Jun-yi, et al.Object detection in multi-scale optical remote sensing images to enhance the characteristics of small targets[J].Acta Optica Sinica, 2024, 44(6): 0628006.
[3] 王艳辉, 张福泉, 邹静, 等. 基于改进卷积神经网络的遥感图像目标检测方法[J]. 南京理工大学学报, 2023, 47(3): 330-336.
Wang Yan-hui, Zhang Fu-quan, Zou Jing, et al. Method of remote sensing image target detection based on improved convolution neural network[J]. Journal of Nanjing University of Science and Technology,2023,47(3):330-336.
[4] Liang Z, Zhu B, Zhu Y X. High resolution representation-based Siamese network for remote sensing image change detection[J]. IET Image Processing,2022,16(9):2506-2517.
[5] 钱晓亮, 曾银凤, 林生, 等. 融合自适应窗口显著性检测和改进超像素分割的高光谱异常检测[J]. 遥感学报, 2023, 27(12): 2748-2761.
Qian Xiao-liang, Zeng Yin-feng, Lin Sheng, et al. Hyperspectral anomaly detection via combining adaptive window saliencydetection and improved superpixel segmentation[J]. Journal of Remote Sensing,2023,27(12):2748-2761.
[6] 刘洋, 张国军. 基于NSCT及RT的遥感图像阴影消除方法[J]. 计算机仿真, 2022,39(5): 465-469.
Liu Yang, Zhang Guo-jun. Remote sensing image shadow elimination method based on nsct and retinex theory(RT)[J]. ComputerSimulation,2022,39(5):465-469.
[7] Hao F, Ma Z F, Tian H P, et al. Semi-supervised label propagation for multi-source remote sensing image change detection[J].Computers & Geosciences, 2023,170(1):1052491.
[8] 姚婷婷, 李鹏飞, 高源, 等. 基于感知增强无锚框网络的遥感图像目标检测[J]. 中国科技论文, 2023, 18(11): 1178-1185.
Yao Ting-ting, Li Peng-fei, Gao Yuan, et al. Object detection based on perception enhanced anchor-free network for remote sensing images[J]. China Sciencepaper,2023,18(11):1178-1185.
[9] Yang N, Chang K P, Dong S Z, et al. Rapid image detection and recognition of rice false smut based on mobile smart devices with anti-light features from cloud database[J].Biosystems Engineering,2022,218:229-244.
[10] 吴琪, 樊彦国, 樊博文, 等.基于图正则化低秩协同表示的高光谱异常检测[J]. 激光与光电子学进展,2022,59(12):467-475.
Wu Qi, Fan Yan-guo, Fan Bo-wen, et al. Graph regularized low-rank and collaborative representation for hyperspectral anomaly detection[J]. Laser & Optoelectronics Progress,2022,59(12):467-475.
[11] 熊娟, 张孙杰, 阚亚亚, 等.基于CAFPN和细化双头解耦的遥感图像目标检测[J]. 应用科学学报, 2023, 41(6): 989-1003.
Xiong Juan, Zhang Sun-jie, Kan Ya-ya, et al. Remote sensing image object detection based on cafpn and refinement double-head decoupling[J]. Journal of Applied Sciences,2023,41(6):989-1003.
[12] 成倩, 李佳, 杜娟. 基于YOLOv5的光学遥感图像舰船目标检测算法[J]. 系统工程与电子技术, 2023, 45(5): 1270-1276.
Cheng Qian, Li Jia, Du Juan. Ship target detection algorithm of optical remote sensing image based on YOLOv5[J]. Systems Engineering and Electronics,2023, 45(5): 1270-1276.
[13] Mahanti N K, Pandiselvam R, Kothakota A, et al. Emerging non-destructive imaging techniques for fruit damage detection: image processing and analysis[J].Trends in Food Science & Technology, 2022, 120: 418-438.
[14] 李强, 武文波, 何明一. 基于MPSoC的遥感图像目标检测算法硬件加速研究[J]. 航天返回与遥感, 2022, 43(1): 58-68.
Li Qiang, Wu Wen-bo, He Ming-yi. Accelerator of remote sensing image object detection based on MPSoC[J]. Spacecraft Recovery & Remote Sensing,2022,43(1):58-68.
[15] Wang P K, Wu L, Qi J X, et al. Unmanned aerial vehicles object detection based on image haze removal under sea fog conditions[J]. IET Image Pcessing,2022,16(10):2709-2721.
[16] Camacho I C, Wang K. Convolutional neural network initialization approaches for image manipulation detection[J]. Digital Signal Processing, 2022, 122: 103376.
[17] Geet L, Chitta R J, Chen J L, et al. Convolutional neural network-assisted adaptive sampling for sparse feature detection in image and video data[J]. IEEE Intelligent Systems, 2023, 38(1): 45-57.
[18] 顾勇翔, 蓝鑫, 伏博毅, 等. 基于几何适应与全局感知的遥感图像目标检测算法[J]. 计算机应用, 2023, 43(3): 916-922.
Gu Yong-xiang, Lan Xin, Fu Bo-yi, et al. Object detection algorithm for remote sensing images based on geometric adaptation and global perception[J]. Journal of Computer Applications, 2023, 43(3):916-922.
[19] Du X J, Wu H L. Feature-aware aggregation network for remote sensing image cloud detection[J].International Journal of Remote Sensing, 2023, 44(5):1872-1899.
[20] Xu D Y, Yang H, Xu W H, et al.Inverse design of pancharatnam-berry phase metasurfaces for all-optical image edge detection[J]. Applied Physics Letters,2022, 120(24): 2411011.
[1] Hua CAI,Yan-yang ZHENG,Qiang FU,Sheng-yu WANG,Wei-gang WANG,Zhi-yong MA. Three-dimensional object detection algorithm based on multi-scale candidate fusion and optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 709-721.
[2] Li-min ZHENG,Shuang CHEN,Gang LI. Multiple object detection of violated vehicles in traffic surveillance video based on YOLOv5 network algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 693-699.
[3] Jun YANG,Peng-fei HAN. Object detection of high-resolution remote sensing images by neural architecture search [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2646-2657.
[4] Hong-zhi WANG,Ming-xuan SONG,Chao CHENG,Dong-xuan XIE. Road object detection method based on improved YOLOv5 algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2658-2667.
[5] Xin-gang GUO,Chao CHENG,Zi-qi SHEN. Face expression recognition based on attention mechanism of convolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2319-2328.
[6] Sheng-jie ZHU,Xuan WANG,Fang XU,Jia-qi PENG,Yuan-chao WANG. Multi-scale normalized detection method for airborne wide-area remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2329-2337.
[7] Xin-dong YOU,Lei GUO,Jing HAN,Xue-qiang LYU. An character recognition network for imprint character [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2072-2079.
[8] Yun-zuo ZHANG,Wei GUO,Wen-bo LI. Omnidirectional accurate detection algorithm for dense small objects in remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1105-1113.
[9] Bin ZHAO,Cheng-dong WU,Xue-jiao ZHANG,Ruo-huai SUN,Yang JIANG. Target grasping network technology of robot manipulator based on attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3423-3432.
[10] Xin CHENG,Sheng-xian LIU,Jing-mei ZHOU,Zhou ZHOU,Xiang-mo ZHAO. 3D object detection algorithm fusing dense connectivity and Gaussian distance [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3589-3600.
[11] Chun-hua WANG,En-ze LI,Min XIAO. Object detection in high-resolution remote sensing images based on multi-feature fusion and twin attention network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 240-250.
[12] Shan XUE,Ya-liang ZHANG,Qiong-ying LYU,Guo-hua CAO. Anti⁃unmanned aerial vehicle system object detection algorithm under complex background [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 891-901.
[13] Bo TAO,Fu-wu YAN,Zhi-shuai YIN,Dong-mei WU. 3D object detection based on high⁃precision map enhancement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 802-809.
[14] Da-xiang LI,Meng-si CHEN,Ying LIU. Spontaneous micro-expression recognition based on STA-LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 897-909.
[15] Lei FU,Wen-bin GU,Yong-bao AI,Wei LI,Nan ZHENG,Liu-yang WANG. Real⁃time robust RGB⁃T target tracking based on dual Siamese network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2906-2915.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Chun-yu, Chen He-xin, Chen Mian-shu . Modified kernelbased uncorrelated set of discriminant vectors[J]. 吉林大学学报(工学版), 2007, 37(04): 891 -896 .
[2] Yu Shu-chun, Yan Ji-hong, Zhao Jie, Cai He-gao . Four step pretreatment method for stereo vision
[J]. 吉林大学学报(工学版), 2007, 37(03): 651 -0654 .
[3] WANG Qi,HU Jian-ming,WANG Yi-zhi,Zhang Yi. Method of collecting traffic information based on inter vehicle communication[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 7 -0012 .
[4] WANG Jia-Xue, WANG Qing-Nian, WU Dong, YANG Fang, ZHAO Zi-Liang. Power matching and simulation for plugin hybrid electric bus[J]. 吉林大学学报(工学版), 2010, 40(06): 1465 -1472 .
[5] HOU Zhong-jun, JIANG Hong-chun, WANG Ren-fang, HU Jun, MA You-qi, WANG Ke-yong, YAN Xi-qiang, QI Peng, MING Ping-wen. Performance stability of fuel cell engine applied in the fuel cell car demonstration[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 131 -136 .
[6] ZHENG Hong-yu, CHEN Guo-ying, SUN Lin-lin, KONG Fan-sen, HE Lei, ZONG Chang-fu. Tire-road friction coefficient estimation based on steer-by-wire system[J]. 吉林大学学报(工学版), 2014, 44(2): 292 -295 .
[7] Qu Zhao-wei,Wang Dian-hai,Yao Rong-han . Kinematic model of start wave at signalized intersection[J]. 吉林大学学报(工学版), 2008, 38(02): 268 -0272 .
[8] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1386 -1391 .
[9] PENG Qi-yuan,XU Jin,ZHENG Sheng-bao,SHAO Yi-ming,DENG Tian-min. Effect of road pavement material change at tunnel entrance and exit on vehicle operation and optimization of transition location[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[10] WANG Hai-yan,LI Yi-bin,NING Long-xiao. Design and implementation of a hydraulic actuated biped robot motion system[J]. 吉林大学学报(工学版), 2014, 44(3): 750 -756 .