吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1347-1352.doi: 10.13229/j.cnki.jdxbgxb201504046

Previous Articles     Next Articles

Speckle noise suppression method for laser active imaging based on signal subspace

WANG Can-jin1, SUN Tao1, WANG Ting-feng1, GUO Jin1, LIU Yu-long2   

  1. 1.State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China;
    2.Jilin Tobacco Monopoly Bureau Information Center, Changchun 130033, China
  • Received:2013-11-12 Online:2015-07-01 Published:2015-07-01

Abstract: To investigate the suppression of the speckle noise in laser active imaging, a denoising method based on Time-Domain Constrained (TDC) in signal subspace is proposed and a laser active imaging system based on range-gating ICCD is constructed for experiment. First, homomorphic transformation is performed to convert the multiplicative noise to additive noise. Second, wavelet transformation is performed to estimate the covariance of speckle noise. Third, the noise image is decomposed into signal subspace and noisy subspace, and singular value decomposing is used to estimate the dimension of the signal subspace. The covariance of clean image is decomposed using eigenvalue decomposing, and denoising estimating matrix is computed. Fourth, the denoising estimating matrix is convolved with noisy image. Finally, the inverse homomorphic transform is carried out to get the denoised image. Experiment results indicate that, compared with classical Lee, Frost and Kuan filtering, the proposed method has advanced denoising performance and consts less computation time.

Key words: information processing, laser active imaging, signal subspace, speckle noise, TDC, homomorphic transformation

CLC Number: 

  • TN249
[1] 王灿进, 孙涛, 石宁宁, 等. 基于双隐含层BP算法的激光主动成像识别系统[J]. 光学精密工程, 2014, 22(6): 1639-1647. Wang Can-jin, Sun Tao, Shi Ning-ning, et al. Laser active imaging and recognition system based on double hidden layer BP algorithm[J]. Opt Precision Eng, 2014, 22(6): 1639-1647.
[2] 钱方, 孙涛, 郭劲, 等. 无参考的特征点复杂度激光干扰图像评估[J]. 光学精密工程, 2015, 23(4): 1179-1186. Qian Fang, Sun Tao, Guo Jin, et al. No-reference laser-dazzling image quality assessment based on feature-point complexity[J]. Opt Precision Eng, 2015, 23(4): 1179-1186.
[3] 赵建川, 王弟男, 陈长青, 等. 红外激光主动成像和识别[J]. 中国光学, 2013, 6(5): 795-802. Zhao Jian-chuan, Wang Di-nan, Chen Chang-qing, et al. Infrared laser active imaging and recognition technology[J]. Chinese Optics, 2013, 6(5): 795-802.
[4] 李自勤,李琦,王骐. 由统计特性分析激光主动成像系统图像的噪声性质[J]. 中国激光, 2004, 31(9):1081-1085. Li Zi-qin, Li Qi, Wang Qi. Noise characteristic in active laser imaging system by statistic analysis[J]. Chinese Journal of Lasers,2004, 31(9): 1081-1085.
[5] Loupas T, McDicken W, Allan P. An adaptive weighted median filter for speckle suppression in medical ultrasonic images[J]. IEEE Trans Circuits System, 1989,36(1):129-135.
[6] Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans Pattern Analysis and Machine Intell, 1980, 20: 165-168.
[7] Frost V S, Stiles J A, Shanmugan K S, et al. A mode for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Trans Pattern Analysis and Machine Intell, 1982, 4: 157-165.
[8] Kuan D, Sawchuk A, Strand T, et al. Adaptive restoration of images with speckle[J]. IEEE Trans Acoust, Speech and Signal Process, 1987, 35(3) : 373-383.
[9] Lu Y H, Tan S Y, Yeo T S, et al. Adaptive filtering algorithms for SAR speckle reduction[C]∥Geoscience and Remote Sensing Symposium, Lincoln,NE, USA, 1996.
[10] Donoho D L. Denoising by soft-thresholding[J]. IEEE TransInform Theory, 1995, 41(3): 613-627.
[11] 叶树亮, 张玉德, 张炜. 齿轮视觉检测中的尺度与方向相关性联合降噪[J]. 光学精密工程, 2014, 22(6): 1622-1630. Ye Shu-liang, Zhang Yu-de, Zhang Wei. Scale and directional correlation combined denoiseing in gear visual inspection[J].Opt Precision Eng, 2014, 22(6): 1622-1630.
[12] Jarabo-Amores P, Rosa-Zurera M, Mata-Moya D, et al. Mean-shift filtering to reduce speckle noise in SAR images[C]∥Instrumentation and Measurement Technology Conference, Singapore, 2009.
[13] Hyenkyun W, Yun S. Alternating minimization algorithm for speckle reduction with a shifting technique[J] . Image Processing,2012,21(4): 1701-1714.
[14] 李晓峰,徐军,罗积军,等. 激光主动成像图像噪声分析与抑制[J]. 红外与激光工程, 2011,40(2): 332-337. Li Xiao-feng, Xu Jun, Luo Ji-jun, et al. Noise analyzing and denoising of intensity image for laser active imaging system[J]. Infrared and Laser Engineering, 2011,40(2): 332-337.
[15] Ikeda S, Ohtsuki T, Tsuji H. Signal-subspace-partition event filtering for eigenvector-based security system using radio waves[C]∥Personal, Indoor and Mobile Radio Communications, Tokyo,Japan,2009.
[16] Gu J, Yang J, Zhang H, et al. Speckle filtering in polarimetric SAR data based on the subspace decomposition[J]. Geoscience and Remote Sensing, 2004, 42(8): 1635-1641.
[17] Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[18] 邓建青, 刘晶红. 基于Fourier-Mellin变换和Keren算法的改进运动估计算法[J]. 液晶与显示, 2011, 26(3): 364-369. Deng Jian-qing, Liu Jing-hong. Improved motion estimation algorithm based on Fourier-Mellin transform and Keren algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(3): 364-369.
[19] 任志英, 高诚辉, 申丁,等. 双树复小波稳健滤波在工程表面粗糙度评定中的应用[J]. 光学精密工程, 2014, 22(7): 1820-1827. Ren Zhi-ying, Gao Cheng-hui, Shen Ding, et al. Application of DT-CWT robust filtering to evaluation of engineering surface roughness[J]. Opt Precision Eng, 2014, 22(7): 1820-1827.
[20] 任文琦, 王元全. 基于梯度矢量卷积场的四阶各向异性扩散及图像去噪[J]. 光学精密工程, 2013, 21(10): 2713-2719. Ren Wen-qi, Wang Yuan-quan. GVC-based fourth-order anisotropic diffusion for image denoising[J]. Opt Precision Eng,2013, 21(10): 2713-2719.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!