吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1461-1467.doi: 10.13229/j.cnki.jdxbgxb201505013

Previous Articles     Next Articles

Internal force coupling control for hyper-redundant multi-axis hydraulic shaking table

WEI Wei1,2,YANG Zhi-dong2,QU Zhi-yong2,HAN Jun-wei2   

  1. 1.Institute of Machinery Manufacturing Technology,China Academy of Engineering Physics,Mianyang 621900,China;
    2.School of Mechatronic Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2013-11-21 Online:2015-09-01 Published:2015-09-01

Abstract: Traditional internal force coupling control for shaking table is complex and shows poor control performance because of the same control parameter numbers of the cylinders. In order to stabilize the internal force, a novel Internal Force Coupling (IFC) control strategy is proposed based on deformation displacement and force spaces. Nonlinear equations of electro-hydraulic servo system and single rigid body dynamic model of mechanical part of the hyper-redundant shaking table are established with hydraulic and parallel mechanism theory respectively. Under the analysis of internal force space, internal forces calculated by force synthesis matrix are compensated in closed loop and decomposed to the inputs of the servovalves through the redundant deformation matrix. Simulation results show that the IFC control strategy effectively reduces cylinder forces and internal coupling forces of the hyper-redundant multi-axis hydraulic shaking table.

Key words: fluid power transmission and control, hyper-redundant shaking table, internal force coupling, electro-hydraulic servo system

CLC Number: 

  • TH137
[1] 袁立鹏,崔淑梅,卢红影,等.基于定理反馈理论迭代学习的液压角振动台控制策略[J].吉林大学学报:工学版,2011,41(3):676-682. Yuan Li-peng,Cui Shu-mei,Lu Hong-ying,et al.QFT iteration-learning based control strategy of hydraulic angular vibration table[J].Journal of Jilin University(Engineering and Technology Edition),2011,41(3):676-682.
[2] Shen Gang, Zhu Zhen-cai, Zhang Lei, et al. Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table[J]. Control Engineering Practice,2013, 21(8):1128-1142.
[3] Severn R T. The development of shaking tables—A historical note[J]. Earthquake Engineering and Structural Dynamics,2011, 40(2):195-213.
[4] Plummer A R. A detailed dynamic model of a six-axis shaking table[J]. Journal of Earthquake Engineering,2008, 12(4):631-662.
[5] Tagawa Y, Kajiwara K. Controller development for the E-Defense shaking table[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2007, 221(2):171-181.
[6] Plummer A R. A general coordinate transformation framework for multi-axis motion control with applications in the testing industry[J]. Control Engineering Parctice,2010, 18(6):598-607.
[7] Saglia J A, Tsagarakis N G, Dai J S, et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2009,223(1):53-70.
[8] 何景峰,李保平,佟志忠,等.液压驱动冗余振动台自由度控制及内力协调[J]. 振动与冲击, 2011, 30(3):74-78. He Jing-feng, Li Bao-ping, Tong Zhi-zhong, et al. DoF control and inner force balancing of hydraulically redundant actuated shaking table[J]. Journal of Vibration and Shock,2011, 30(3): 74-78.
[9] 关广丰,熊伟,王海涛,等. 6自由度电液振动台控制策略研究[J]. 振动与冲击,2010,29(4):200-203. Guan Guang-feng, Xiong Wei, Wang Hai-tao, et al. Control strategy of a 6-DOF hydraulic shaker[J]. Journal of Vibration and Shock, 2010,29(4):200-203.
[10] Underwood Marcos A, Keller Tony. Applying coordinate transformations to multi-DOF shaker control[J]. Sound and Vibration,2006, 40(1):22-27.
[11] Jiang Hong-zhou, He Jing-feng, Tong Zhi-zhong. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator[J].Mechanism and Machine Theory,2010, 45(5):722-739.
[12] Chen Yi-xin, Mclnroy John E. Decoupled control of flexure-jointed hexapods using estimated joint-space mass-inertia matrix[J]. IEEE Transactions on Control Systems Technology,2004, 12(3):413-421.
[13] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equation of the general Stewart platform through the Newton-Euler approach[J]. Mechanism and Machine Theory,1998, 33(7):993-1012.
[14] Jiang Hong-zhou, He Jing-feng, Tong Zhi-zhong. Modal space control for a hydraulically driven Stewart platform[J]. Journal of Control Engineering and Technology, 2012, 2(3):106-115.
[15] Merritt H E. Hydraulic Control Systems[M]. New York: John Wiley & Sons, 1967.
[16] Li H R. Hydraulic Control Systems[M]. Beijing:National Defense Industry Press, 1990.
[1] ZHANG Jian, JIANG Ji-hai, LI Yan-jie. Flow characteristics of different cone valves [J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905.
[2] WU Wei, DI Chong-feng, HU Ji-bin, YUAN Shi-hua. Adaptive reverse driving system based on hydraulic transformer [J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911.
[3] WU Wei, DI Chong-feng, HU Ji-bin, YUAN Shi-hua. Static stiffness of hydraulic transformer controlled system [J]. 吉林大学学报(工学版), 2016, 46(4): 1130-1135.
[4] WANG Zhen-bao, QIN Si-cheng, MA Run-da. Thermal characteristic analysis in hydraulic transmission system of wheel loader [J]. 吉林大学学报(工学版), 2016, 46(4): 1136-1141.
[5] YUAN Zhe, ZHOU Qian-qian, LIU Chun-bao, MA Wen-xing, XU Zhi-xuan. Blade design and aerodynamics of MW wind turbine based on BEM theory [J]. 吉林大学学报(工学版), 2016, 46(4): 1142-1148.
[6] LIU Xin-hui, LI Qian-wen, CHEN Jin-shi, ZHANG Peng, NIU Ping-jie. Mathematical modeling and simulation of load-sensing priority valve [J]. 吉林大学学报(工学版), 2015, 45(6): 1817-1824.
[7] DENG Hai-shun, HUANG Kun, WANG Chuan-li, LI Yong-mei. Overturning moment of cylinder of balanced two-ring axial piston pump [J]. 吉林大学学报(工学版), 2015, 45(5): 1468-1473.
[8] MA Wen-xing, ZHANG Yan, LEI Yu-long. Design and test of control system of hydrodynamic automotive transmission for heavy vehicle [J]. 吉林大学学报(工学版), 2015, 45(5): 1455-1460.
[9] LIU Jian-fang, CHEN Hong-xia, LIU Guo-jun. Transport performance of non-contact transformation using aerostatic suspension [J]. 吉林大学学报(工学版), 2015, 45(3): 814-819.
[10] DONG Han,LIU Xin-hui,WANG Xin,ZHENG Bo-yuan,LIANG Wei-quan,WANG Jia-yi. Impact of main parameters of accumulator on parallel hydraulic hybrid [J]. 吉林大学学报(工学版), 2015, 45(2): 420-428.
[11] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path [J]. 吉林大学学报(工学版), 2014, 44(6): 1704-1709.
[12] LI Fei-long, LIN Yong-gang, LI Wei, LIU Hong-wei, CUI Bao-ling. Energy hydraulic transmission system of wind turbine [J]. 吉林大学学报(工学版), 2014, 44(6): 1664-1668.
[13] TAN Yue, MA Wen-xing, LIU Chun-bao. Precision control on blades forming of stamping welded hydrodynamic torque converter [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 530-534.
[14] DONG Han, LIU Xin-hui, WANG Xin, CHEN Jin-shi, WANG Jia-yi, ZHENG Bo-yuan. Energy saving performance of hydraulic hybrid system with AMESim [J]. 吉林大学学报(工学版), 2013, 43(05): 1264-1270.
[15] TAN Yue, MA Wen-xing, LU Xiu-quan. Welding strength analysis of stamping welded hydrodynamic torque converter based on fluid-solid interaction [J]. 吉林大学学报(工学版), 2013, 43(04): 928-932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHEN Gui-xiang, ZENG Wen-bin, ZHANG Ying-zhi, WU Mao-kun, ZHENG Yu-bin. Determination of average maintenance time of CNC machine tools under minimum failure rate[J]. 吉林大学学报(工学版), 2017, 47(5): 1519 -1526 .