吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 890-896.doi: 10.13229/j.cnki.jdxbgxb201603032

• Orginal Article • Previous Articles     Next Articles

Twist-lock online recognition based on improved incremental PCA by Kinect

MA Shuang1, 2, ZHOU Chang-jiu2, ZHANG Lian-dong2, HONG Wei1, TIAN Yan-tao1   

  1. 1.College of Communication Engineering, Jilin University, Changchun 130022, China;
    2.Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic, Singapore 139651,Singapore
  • Received:2014-11-26 Online:2016-06-20 Published:2016-06-20

Abstract: Research of the cognitive recognition of twist-lock automation handling system is conducted. In this research, Kinect is employed to collect environment and objects information, and an improved incremental Principal Component Analysis (PCA) is proposed to build real-time cognitive recognition system. In online learning phase, the new class is monitored and feature vectors are updated incrementally based on the difference between the new input and the reconstruction one using current eigenvectors; the feature vectors are optimized and the inner-class distance threshold is updated adaptively based on comparison of inner-class distance. Thereby, the proposed algorithm can convert high-dimension information to low-dimension machine expression, learn, update and accumulate feature knowledge online, and complete pattern recognition task at the same time. Experiment results show that the proposed algorithm can improve the adaptability, robustness, recognition rate and real-time performance of a visual system, Moreover, calculation and storage space can be reduced by controlling the feature space dimension.

Key words: computer application, online learning, incremental principal component analysis(PCA), adaptive feature update, cognitive recognition

CLC Number: 

  • TP391.4
[1] Chellappa M. The weakest link[C]∥International Maritime-Port Technology and Development Conference,Singapore,2011:278-282.
[2] 宋怀波,史建强. 应用PCA理论进行多人脸姿态估计的方法[J]. 吉林大学学报:工学版,2013,43(增刊1):43-46.
Song Huai-bo, Shi Jian-qiang. Pose estimation of varied human face based on PCA method[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(Sup.1):43-46.
[3] Yuan Y, Pang Y W, Pan J,et al. Scene segmentation based on IPCA for visual surveillance[J]. Neurocomputing,2009,72(10-12):2450-2454.
[4] 杨仁杰,刘蓉,杨延荣,等. 用二维相关近红外谱和多维主成分分析判别掺杂牛奶[J]. 光学精密工程,2014,22(9):2352-2358.
Yang Ren-jie, Liu Rong,Yang Yan-rong, et al. Classification of adulterated milk by two-dimensional correlation near-infrared spectroscopy and multi-way principal component analysis[J]. Optics and Precision Engineering, 2014,22(9):2352-2358.
[5] 刘志强, 尹建芹, 张玲, 等. 基于Kinect数据主成分分析的人体动作识别[J]. 光学精密工程,2015,23(10):702-711.
Liu Zhi-qiang, Yin Jian-qin, Zhang Ling, et al. Human action recognition based on Kinect data principal component analysis[J]. Optics and Precision Engineering,2015,23(10):702-711.
[6] Zhao H T, Yuen P C, Kwork J. A novel incremental principal component analysis and its application for face recognition[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B(Cybernetics),2006,36(4):873-886.
[7] 李大健,齐敏,郝重阳. 模式识别导论[M]. 北京: 清华大学出版社, 2009.
[8] Oja E, Karhunen J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix[J]. Journal of Mathematical Analysis and Applications,1985,106(1):69-84.
[9] Sanger T D. Optimal unsupervised learning in a single-layer linear feedforward neural network[J]. Neural Networks,1989,2(6):459-473.
[10] Weng J Y, Zhang Y L, Hwang W S. Candid covariance-free incremental principal component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):1034-1040.
[11] Hall P, Marshall D, Martin R. Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition[J]. Image and Vision Computing,2002,20(13-14):1009-1016.
[12] 黄诚,沈昱明,刘华平,等. 基于增量PCA的目标跟踪算法[J]. 江南大学学报:自然科学版,2013,12(6):647-652.
Huang Cheng,Shen Yu-ming,Liu hua-ping,et al. Target tracking algorithm based on the incremental PCA[J]. Journal of Jiangnan University(Natural Science Edition),2013,12(6):647-652.
[13] Skocaj D, Leonardis A. Weight and robust incremental Method for subspace learning[C]∥9th IEEE International Conference on Computer Vision,Nice, France,2003:1494-1501.
[14] Neto H V, Nehmzow U. Incremental PCA: an alternative approach for novelty detection[C]∥Towards Autonomous Robotic System, London,2005:227-233.
[15] Qu X Y, Yao M H. Adaptive subspace incremental PCA based online learning for object classification and recognition[C]∥4th International Congress on Image and signal Processing, Shanghai,China,2011:1494-1498.
[16] Ma S, Zhou C J, Zhang L D,et al. 3D irregular object recognition for twist-lock handling system[C]∥26th Chinese Control and Decision Conference,Changsha,China,2014:2729-2734.
[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[11] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[2] YAO Yun-shi, LIU Long, FENG Zhong-xu, SHEN Jian-jun, CHEN Shi-bin. Simulation of hybrid power system for tandem vibratory rollers[J]. 吉林大学学报(工学版), 2013, 43(04): 871 -876 .
[3] XU Yong-jun, LI Yuan-chun, ZHAO Xiao-hui. Modeling and trajectory tracking control of vehicle hydraulic rigid-flexible manipulator based on the expected joint angle compensation[J]. 吉林大学学报(工学版), 2013, 43(05): 1367 -1374 .
[4] WANG Mi, CAI Zhong-yi, LI Ming-zhe, WANG Da-ming. Calculation of bending deformation of flexible roll forming for three-dimensional surface parts and numerical simulation[J]. 吉林大学学报(工学版), 2014, 44(2): 404 -408 .
[5] WANG Zhe, YANG Bai-ting, LIU Xin, LIU Qun, SONG Xian-min. Discriminant analysis of driving decisions based on fuzzy clustering[J]. 吉林大学学报(工学版), 2015, 45(5): 1414 -1419 .
[6] SUN Wen-xu, HONG Wei, HUANG En-li, XIE Fang-xi, SU Yan, JIANG Bei-ping. Effect of initial piston position on direct-start mode of gasoline engine without starter[J]. 吉林大学学报(工学版), 2016, 46(5): 1471 -1477 .
[7] ZHAO Ding-xuan, WANG Qian, ZHANG Zhu-xin. Extenics theory for reliability assessment of carrier helicopter based on analytic hierarchy process[J]. 吉林大学学报(工学版), 2016, 46(5): 1528 -1531 .
[8] MA Zhi-xing, ZHAO Qi, ZHANG Hao. Fourier analysis model for housekeeping gene[J]. 吉林大学学报(工学版), 2016, 46(5): 1639 -1643 .
[9] HE Kai, ZHANG Li-ying, GAO Jun-qiao. Robust image inpainting algorithm based on isophote[J]. 吉林大学学报(工学版), 2016, 46(3): 929 -933 .
[10] ZHANG Yi-rui, SU Jian, ZHANG Lan, TAN Fu-xing, XU Guan. Primary suspension stiffness testing of railway vehicle bogie[J]. 吉林大学学报(工学版), 2016, 46(4): 1083 -1089 .