吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 633-639.doi: 10.13229/j.cnki.jdxbgxb20161263

Previous Articles     Next Articles

Bionic hypocenter localization method inspired by sand scorpion in locating preys

WANG Ke1, LIU Fu1, 2, KANG Bing1, HUO Tong-tong1, ZHOU Qiu-zhan1, 2   

  1. 1.College of Communication Engineering, Jilin University, Changchun 130022, China;
    2.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2016-11-22 Online:2018-03-01 Published:2018-03-01

Abstract: Inspired sand scorpions in locating their preys, a novel bionic localization method is proposed to solve the problem of vibration event localization. Different from commonly used methods, a spike firing model is introduced to solve the problem of arrival picking. Based on the 3/1 configuration, each spike firing model fires different number of spikes. The vibration signal is coded into spike signal for orientation of the target using population vector code. According to the actual situation and the selectivity of the biological evolution, the distribution of the receivers is modified and compared with that of before modification. Also the bionic method is compared with the TDOA method in simulation environment. The orientation errors of the bionic method are smaller than that of the TDOA method. In addition, location experiment is carried out in an open area. The average error of landing orientation is 4.9310° for 76 sets of data, satisfying the orientation requirement.

Key words: information processing technology, sand scorpions, hypocentral location, spike firing model, population vector code

CLC Number: 

  • TP277
[1] Zhebel O, Eisner L. Simultaneous microseismic event localization and source mechanism determination [J]. Geophysics, 2015, 80 (1): 1-9.
[2] Anikiev D, Valenta J, Stanek F, et al. Joint location and source mechanism inversion of microseismic events: benchmarking on seismicity induced by hydraulic fracturing [J]. Geophysical Journal International, 2014, 198 (1): 249-258.
[3] van Hemmen J L. Neuroscience from a mathematical perspective key concepts, scales and scaling hypothesis, universality [J]. Biological Cybernetics, 2014, 108 (5): 701-712.
[4] Li Y M, Li S, Ge Y J. A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments [J]. Neurocomputing, 2013, 104: 170-179.
[5] Jeong E S, Kim D E. Detecting the direction of vibration inspired by prey detection behavior of sand scorpions [J]. Journal of Institute of Control, Robotics and Systems, 2012, 18 (10): 947-954.
[6] Stürzl W, Kempter R, van Hemmen J L. Theory of arachnid prey localization [J]. The American Physical Society, 2000, 84 (24): 5668-5671.
[7] Adams S V, Wennekers T, Bugmann G, et al. Application of arachnid prey localisation theory for a robot sensorimotor controller [J]. Neurocomputing, 2011, 74 (17): 3335-3342.
[8] Garreau G, Proxenou E, Andreou A G, et al. Person localization through ground vibrations using a sand-scorpion inspired spiking neural network[C]∥ Proceedings of the 47th Annual Conference on Information Sciences and Systems (CISS) IEEE,Baltimore,MD USA,2013:1-4.
[9] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. The Journal of Physiology, 1952, 117 (4): 500-544.
[10] Brunel N, van Rossum M C W. Lapicque's 1907 paper: from frogs to integrate-and-fire [J]. Biological Cybernetics, 2007, 97 (5/6): 337-339.
[11] Brownell P, Farley R D. Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, paruroctonus mesaensis [J]. Journal of Comparative Physiology A, 1979,131(1):23-30.
[12] Brownell P H, van Hemmen J L. Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions [J]. Amerzool, 2001, 41(5):1229-1240.
[13] van Hemmen J L, Schwartz A B. Population vector code: a geometric universal as actuator [J]. Biological Cybernetics, 2008, 98 (6): 509-518.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[11] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[12] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[13] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[14] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
[15] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .