吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1861-1867.doi: 10.13229/j.cnki.jdxbgxb201706026

• Orginal Article • Previous Articles     Next Articles

Compressive behavior and mechanism of volcanic ash-SBS, rubber powder-SBS and SBS modified asphalt

LIU Yao-hui1, CHEN Qiao-xu1, SONG Yu-lai1, SHEN Yan-dong2   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022 China;
    2.College of Road and Bridge Engineering,Jilin Transportation Vocational College, Changchun 130012 China
  • Received:2016-10-28 Online:2017-11-20 Published:2017-11-20

Abstract: Compressive behavior of volcanic ash-Styrene-Butadiene-Styrene (SBS), rubber powder-SBS and SBS modified asphalt mixtures at different temperatures were investigated. Then the deformation mechanism in the compression process of the three kinds of asphalts were revealed. The compressive properties of the asphalt mixture samples were tested at temperatures of 40, 25, 20, 0, -20 and -40 ℃ by static compressive tests. Experiment results show that the compressive properties of the asphalts were significantly promoted above the temperature of 20 ℃ by adding the volcanic ash and the rubber into the SBS modified asphalt mixture, respectively, the compressive strength was increased by 30% by adding volcanic ash. SBS plays a dominant role at the temperatures of 0 ℃ and -20 ℃ in the asphalts, and the compressive strength of SBS modified asphalt mixture is higher than that of the ash-SBS and rubber powder-SBS modified asphalt mixtures. The volcanic ash improves the shrinkage performance of the asphalt mortar when the temperature descends to -40 ℃, and thus the compressive property of the volcanic ash-SBS modified asphalt mixture is better than that of the others.

Key words: compound materials, road project, asphalt, volcanic ash, rubber powder, SBS, compression behavior, deformation mechanism

CLC Number: 

  • U416.217
[1] JEONG K D, LEE S J. Interaction effects of crumb rubber modified asphalt binders[J].Construction and Building Materials, 2010, 24(5):823-833.
[2] Souza R, Himeno K, Kobayashi A. The characterization of asphalt-rubber blinder[J]. Science Amp; Engineering, 2007, 57(12):7624-7626.
[3] Champion L,Gerard J F,Planche J P. Low temperature fracture properties of polymer-modified asphalts relationships with the morphology[J]. J MATER SCI, 2001,36(2):451-460.
[4] Collins P, Masson J F, Polomark G. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry[J].Energ Fuel, 2006, 20:1266-1268.
[5] 于丽梅,陈志国. 填料型细火山灰改性沥青混合料路用性能研究[J]. 吉林交通科技,2015,04:27-33.
Yu Li-mei, Chen Zhi-guo. Study on the pavement performance of modified asphalt mixture with filler type[J]. Jilin traffic Science and Technology,2015,4:27-33.
[6] 陈志国火山灰沥青胶浆路用性能的研究[D].哈尔滨工业大学,2010.
Chen Zhi-guo Research on performance of volcanic ash asphalt mastic[D].Harbin:Harbin Institute of Technology,2010.
[7] 李正中,宋晓燕,魏连雨,等. 胶粉改性沥青评价指标及试验方法适应性分析[J]. 中外公路,2010,30(6):207-210.
Li Zheng-zhong, Song Xiao-yan, Wei Lian-yu, et al. Rubber powder modified asphalt evaluation index and adaptability analysis[J]. Journal of China & Foreign Highway, 2010, 30(6): 207-210.
[8] Lu X,Isacsson U. Constr Build Mater 2000.14:79-88.
[9] 汪水银,郭朝阳,彭锋. 废胎胶粉沥青的改性机理[J]. 长安大学学报:自然科学版,2010,04:34-38.
Wang Shui-yin, Guo Chao-yang, Peng Feng. Research on modified mechanism of asphalt with crumb tire rubber[J]. Journal of Chang'an University(Natural Science Edition), 2010,04:34-38.
[10] 谭忆秋.沥青与沥青混合料[M].哈尔滨:哈尔滨工业大学出版社,2007:14-16.
[11] 吴中华. 橡胶粉改性沥青及混合料路用性能研究[D].杭州:浙江大学,2013.
Wu Zhi-hua. Research on the Performance of rubber powder modified asphalt and the mixture[D]. Hangzhou:Zhejiang University ,2013.
[12] 王涛,才洪美,张玉贞. SBS改性沥青机理研究[J]. 石油沥青,2008,22(6):10-14.
Wang Tao, Cai Hong-mei,Zhang Yu-zhen. Study on the mechanism of SBS modified asphalt[J]. Petroleum Asphalt, 2008,22(6):10-14.
[13] 杨光,申爱琴,陈志国,等. 季冻区橡胶粉与SBS复合改性沥青混合料性能及改性机理[J]. 长安大学学报:自然科学版,2015,06:6-15,23.
Yang Guang, Shen Ai-qin, Chen Zhi-guo, et al. Pavement performance and modified mechanism of rubber powder and SBS compound modified asphalt mixture in seasonal freezing region[J]. Journal of Chang'an University (Natural Science Edition), 2015,06:6-15,23.
[14] 王抒音,王哲人,王翠红. 提高沥青混合料抗水损害新技术[J]. 石油大学学报:自然科学版,2002,26(6):95-98,109.
Wang Shu-yin, Wang Zhi-ren, Wang Cui-hong. New technology to improve the water resistance of asphalt mixture[J]. Journal of The University of Petroleum,china, 2002,26(6):95-98,109.
[15] 陈梓宁,程培峰. 火山灰与橡胶粉复合改性沥青混合料的研究[J]. 公路交通科技(应用技术版). 2015(11):26-30.
Chen Zi-ning, Cheng Pei-feng. Study on the compound modified asphalt mixture of volcanic ash and rubber powder[J]. Highway transportation technology (Application Technology) 2015(11):26-30.
[16] 刘植昌,凌立成,乔文明,等. 添加硫沥青球不熔化机理的研究[J]. 炭素技术,1998,(2):10-14.
Liu Zhi-chang, Ling Li-cheng, Qiao Wen-ming, et al. Study on the non-melting mechanism of sulfur asphalt[J].Carbon Techniques, 1998,(2):10-14.
[1] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[2] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[3] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[4] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[5] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[6] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[7] WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, CHEN Zhong-da. Dynamic shear modulus prediction of asphalt mastic based on micromechanics [J]. 吉林大学学报(工学版), 2017, 47(2): 459-467.
[8] ZHENG Chuan-feng, FENG Yu-peng, GUO Xue-dong, MA Zhuang, QIN Yong. Effect of filler-to-bitumen ratio on low-temperature cohesive strength of asphalt mortar [J]. 吉林大学学报(工学版), 2016, 46(2): 426-431.
[9] SI Wei, MA Biao, REN Jun-ping, WANG Hai-nian, GE-Sang Ze-ren. Analysis of asphalt pavement performance under freeze-thaw cycles using reliability method [J]. 吉林大学学报(工学版), 2016, 46(1): 126-132.
[10] ZHANG Dong, HUANG Xiao-ming, ZHAO Yong-li. Aggregate skeleton composition of stone mastic asphalt and its contact properties [J]. 吉林大学学报(工学版), 2015, 45(2): 394-399.
[11] CHENG Yong-chun, MA Hui-li, ZHANG Peng, TAO Jing-lin, HUANG Jian-ping. Experimental study of physical and mechanical properties of asphalt mortars with different fillers [J]. 吉林大学学报(工学版), 2014, 44(6): 1628-1632.
[12] LI Xiao-jun,LIANG Lu-lu,XIE Cheng-wei,YANG Shuo. Auto-generation and application of virtual mechanical simulation model of asphalt concrete [J]. 吉林大学学报(工学版), 2014, 44(3): 655-660.
[13] WANG Cong, GUO Nai-sheng, ZHAO Ying-hua, TAN Yi-qiu. Air voids distribution of asphalt mixtures in different compaction methods and aggregate gradations [J]. 吉林大学学报(工学版), 2014, 44(01): 74-80.
[14] MENG Fan-yu, PAN Xiao-dong. Optimization of functional asphalt pavement based on GA-ANN [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 535-538.
[15] WANG Li-ming, TAN Yi-qiu, SHI Zhen-wu, LIU Shuang. Determination of warm-mix asphalt reasonable compaction temperature range by impact penetration test [J]. 吉林大学学报(工学版), 2013, 43(06): 1494-1499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!