吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 919-928.doi: 10.13229/j.cnki.jdxbgxb20170784

• Orginal Article • Previous Articles     Next Articles

Video encryption method based on hyperchaos of quantum cellular neural networks

DI Xiao-qiang1,2, WANG Ying-zheng1, LI Jin-qing1,2, CONG Li-gang1,2, QI Hui1,2   

  1. 1.School of Computer Science and Technology,Changchun University of Science and Technology, Changchun 130022,China;
    2.Jilin Province Key Laboratory of Network and Information Security,Changchun 130022,China
  • Received:2017-08-01 Online:2018-05-20 Published:2018-05-20

Abstract: To solve the large delay problem of video coding by using the chaotic encryption, a fast security encryption algorithm for H.264/AVC video is proposed. First, a key generation scheme is designed. Four groups of chaotic sequences are generated with four-dimensional Quantum Cellular neural Network (QCNN) iteration, the first three groups are used for chaotic sequence pool, and the other one is used to generate the initial value of the Logistic map to increase the dynamics of the initial value. Then, to avoid repeatedly solving the high dimensional chaotic systems, the sequence of the calculation key is selected from the chaotic sequence pool according to the index generated by the Logistic map. After calculation, the encryption key is obtained, which realizes the fast generation of the key. Finally, some key elements, such as partial sign bits and information bits in video coding, are effectively encrypted for reducing the amount of encrypted data. Experiments show that the proposed encryption algorithm for 70 frames of video coding delay is less than 0.6%. Through the key space analysis, NIST SP 800-22 test, known plaintext attack and inference attack experiment analysis, it is shown that the proposed video encryption algorithm has the advantages of large key space, good random key, strong attack resistance and high security. In addition, the algorithm does not change the video compression ratio to conform video encoding format specification. By quickly generating secure keys with only encrypting the key video syntax elements, the H.264/AVC video encryption delay is effectively reduced.

Key words: computer application, video encryption, H.264/AVC, quantum cellular neural network

CLC Number: 

  • TP301
[1] Liu F, Koenig H.A survey of video encryption algorithms[J]. Computers & Security, 2010, 29(1): 3-15.
[2] Ahn J, Shim H J, Jeon B, et al.Digital video scrambling method using intra prediction mode[C]∥Pacific-Rim Conference on Multimedia. Berlin:Springer, 2004: 386-393.
[3] 蒋建国, 邢世义, 包先雨. 一种用于H.264的视频加密方案[C]∥全国计算机技术与应用,合肥,中国,2008:525-531.
Jiang Jian-guo, Xing Shi-yi, Bao Xian-yu.A video encryption scheme for H.264[C]∥National Computer Technology and Applications,Hefei, China, 2008:525-531.
[4] Fan Yi-bo,Wang Ji-dong, Ikenaga T, et al.An unequal secure encryption scheme for H. 264/AVC video compression standard[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2008, 91(1): 12-21.
[5] Liu Z, Li X.Motion vector encryption in multimedia streaming[C]∥Multimedia Modelling Conference, 2004. Proceedings of 10th International, IEEE, Brisbane, Australia,2004: 64-71.
[6] Lian S, Sun J, Liu G, et al.Efficient video encryption scheme based on advanced video coding[J]. Multimedia Tools & Applications, 2008, 38(1):75-89.
[7] Shahid Z, Chaumont M, Puech W.Fast protection of H. 264/AVC by selective encryption of CAVLC and CABAC for I and P frames[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(5): 565-576.
[8] Wang Y, O'Neill M, Kurugollu F. A tunable encryption scheme and analysis of fast selective encryption for CAVLC and CABAC in H. 264/AVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(9): 1476-1490.
[9] Peng F, Gong X, Long M, et al.A selective encryption scheme for protecting H. 264/AVC video in multimedia social network[J]. Multimedia Tools and Applications, 2016,76(3):1-19.
[10] 田海江, 雷鹏, 王永,等. 基于混沌和DNA动态编码的图像加密算法[J]. 吉林大学学报:工学版, 2014, 44(3):801-806.
Tian Hai-jiang, Lei Peng, Wang Yong, et al.Image encryption algorithm based on chaos and DNA dynamic coding[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(3):801-806.
[11] 蒲鑫, 田小建, 王春民,等. 基于光纤混沌替代电路的图像加密方案[J]. 吉林大学学报:工学版, 2014, 44(1):270-275.
Pu Xin, Tian Xiao-jian, Wang Chun-min,et al.Image encryption scheme based on optical chaos replace circuit[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1):270-275.
[12] Peng F, Zhu X, Long M.An ROI privacy protection scheme for H. 264 video based on FMO and Chaos[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(10): 1688-1699.
[13] Lent C S, Tougaw P D, Porod W, et al.Quantum cellular automata[J]. Nanotechnology, 1993, 4(1): 49.
[14] 蔡理, 马西奎, 王森. 量子细胞神经网络的超混沌特性研究[J]. 物理学报,2003,52(12): 3002-3006.
Cai Li, Ma Xi-kui, Wang Sen.Study on hyperchaos of quantum cellular neural networks[J]. Acta Physica Sinica, 2003, 52(12): 3002-3006.
[15] Porod W.Quantum-dot devices and quantum-dot cellular automata[J]. Journal of the Franklin Institute, 1997, 334(5/6): 1147-1175.
[16] 王宏霞,何晨. 细胞神经网络的动力学行为[J]. 物理学报, 2003, 52(10):2409-2414.
Wang Hong-xia, He Chen.Dynamic behavior of cellular neural networks[J]. Acta Physica Sinica, 2003, 52(10):2409-2414.
[17] Tan T K, Weerakkody R, Mrak M, et al.Video quality evaluation methodology and verification testing of HEVC compression performance[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1): 76-90.
[18] Pareschi F, Rovatti R, Setti G.On Statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution[J]. IEEE Transactions on Information Forensics & Security, 2012, 7(2):491-505.
[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[11] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Lei,ZONG Chang-fu,TIAN Cheng-wei,WU Ren-jun,Zhang Tai-wu. DC motor fault diagnosis and fault tolerance control method for steer-by-wire car[J]. 吉林大学学报(工学版), 2011, 41(03): 608 -612 .
[2] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[3] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[4] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[5] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[6] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[7] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[8] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[9] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[10] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .