Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1258-1265.doi: 10.13229/j.cnki.jdxbgxb20180303

Previous Articles    

Numerical simulation for handbrake fixed plate forming

Xin LI1(),Dan WANG1,Jun⁃xu CHEN2,Yan⁃peng SUN1,Zheng⁃wei GU1,Hong XU1   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
    2. FAW Jiefang Automobile Company Limited, Qingdao 266000, China
  • Received:2018-04-03 Online:2019-07-01 Published:2019-07-16

Abstract:

The stamping process of handbrake fixed plate on the automobile was simulated using the finite element simulation software AutoForm, and the influence mechanism of process parameters on the drawing forming was investigated. Orthogonal experiments were used to optimize parameters and the whole process was simulated. The simulation results indicate that the quality of forming parts is improved by optimizing the process parameters on the basis of the rational design of the drawbead. The optimum condition of process parameters are blankholder force 600 kN, die radius 6 mm, die gap 1.50 mm, friction coefficient 0.15, drawbead coefficient 0.5. The correctness of the simulation results is proved by practical experiments, which means that simulation software Autoform can be applied to guide the actual production.

Key words: materials synthesis and processing technology, handbrake fixed plate, AutoForm, numerical simulation, multi?objective optimization

CLC Number: 

  • TG386

Fig.1

Three dimensional model of handbrake fixed plate"

Fig.2

Finite element model"

Fig. 3

Forming limit diagram of initial simulation"

Fig.4

Evolution of maximum thinning and maximum wrinking criterion with force"

Fig.5

Forming limit diagram of typical for special blank holder force"

Fig.6

Evolution of maximum thinning and maximum wrinking criterion with die radius"

Fig.7

Forming limit diagram of typical die radius"

Fig.8

Evolution of maximum thinning and maximum wrinking criterion with friction coefficient"

Fig.9

Forming limit diagram of typical friction codfficient"

Fig.10

Evolution of maximum thinning and maximum wrinking criterion with coefficient drawbeads"

Fig.11

Arrangement of drawbead and forming limit diagram of typical coefficient drawbeads"

Table 1

Orthogonal t and analysis of orthogonal experiment result"

序列 影响因素 评判标准
A B C D 最大减薄率% 最大起皱评判值%
最佳参数组合 A3 B1 D4 C3
1 A1(400) B1(6) C1(0.13) D1(1.44) 29.8 2.3
2 A1(400) B2(7) C2(0.14) D2(1.46) 29.6 2.5
3 A1(400) B3(8) C3(0.15) D3(1.48) 28.8 2.7
4 A1400) B4(9) C4(0.16) D4(1.50) 28.7 2.5
5 A2(500) B1(6) C2(0.14) D3(1.48) 29.6 2.7
6 A2(500) B2(7) C1(0.13) D4(1.50) 29.7 2.7
7 A2(500) B3(8) C4(0.16) D1(1.44) 29.7 3.0
8 A2(500) B4(9) C3(0.15) D2(1.46) 28.7 2.8
9 A3(600) B1(6) C3(0.15) D4(1.50) 28.8 2.4
10 A3(600) B2(7) C4(0.16) D3(1.48) 29.6 2.5
11 A3(600) B3(8) C1(0.13) D2(1.46) 29.1 2.7
12 A3(600) B4(9) C2(0.14) D1(1.44) 29.3 2.4
13 A4(700) B1(6) C4(0.16) D2(1.46) 30.1 2.7
14 A4(700) B2(7) C3(0.15) D1(1.44) 30.2 2.7
15 A4(700) B3(8) C2(0.14) D4(1.50) 29.5 2.6
16 A4(700) B4(9) C1(0.13) D3(1.48) 29.9 2.5
极差 R 1 0.725 0.625 0.50 0.575 影响程度 A>B>D>C

最优

组合

A3 B3 D4 C3
R 2 0.3 0.225 0.025 0.125 A>B>D>C A3 B1 D4 C1

Fig.12

Comparison of simulation results with actual experimental in the best combination of parameters"

Fig.13

Actual production of handbrake fixed plate"

Fig.14

Springback simulation result"

1 关来德 . 汽车侧围外板A柱拐角起皱的分析及解决方案[J]. 锻压技术,2017,42(4):50⁃54.
Guan Lai⁃de . Analysis and solution on corner wrinkling of side panel A column for automobile[J]. Forging and Stamping Technology,2017,42(4):50⁃54.
2 李春光,胡平,郭威 . 汽车覆盖件深拉延有限元仿真过程中的材料塑性与失效模型[J]. 吉林大学学报:工学版,2005,35(3):277⁃281.
Li Chun⁃guang , Hu Ping , Guo Wei . Material plasticity and invalidation model in fem simulation of automobile panels deep drawing[J]. Journal of Jilin University(Engineering and Technology Edition),2005,35(3):277⁃281.
3 张海波,黎甜,白贺 . 基于Cimatron E的离心泵蜗壳数控加工技术研究[J]. 东北电力大学学报,2013,33(3):1⁃4.
Zhang Hai⁃bo , Li Tian , Bai He . Numerical control processing technology research of centrifugal pump volute based on Cimatron E[J]. Journal of Northeast Dianli University,2013,33(3):1⁃4.
4 Kawka M , Olejnik L , Rosochowski A , et al . Simulation of wrinkling in sheet metal forming[J]. Journal of Materials Processing Technology,2001,109(3):283⁃289.
5 肖红波,蔡浩华 .汽车前翼子板冲压成形工艺优化[J]. 锻压技术,2016,41(2):35⁃38.
Xiao Hong⁃bo , Cai Hao⁃hua . Improvement of stamping process for car front fender[J]. Forging and Stamping Technology,2016,41(2):35⁃38.
6 段向敏 . 汽车覆盖件成形数值模拟及拉延筋优化研[D]. 重庆:西南大学工程技术学院,2014.
Duan Xiang⁃min . Numerical simulation and draw bead optimization of automobile panels forming[D]. Chongqing:School of Engineering and Technology,Southwest University,2014.
7 Mehta H S , Kobayashi S . Finite element analysis and experimental investigation of Sheet metal stretching[J]. Journal of Manufacturing Science and Engineering,1973,95(3):874⁃880.
8 De Moor E , Lacroix S , Samek L ,et al . Dilatometric study of the quench and partitioning process[C]∥The 3rd International Conference on Advanced Structural Steels, Gyeongju,Korea, 2006:873⁃879.
9 张早明 . CAE在汽车工业中的应用[J]. 汽车科技,2008(5):7⁃11.
Zhang Zao⁃ming . Application of CAE in car industry[J].Automobile Science and Technology,2008(5):7⁃11.
10 Lam Y C , Brtiion G A , Deng Y M . A computer⁃aided system for optimal moulding design using a simulation⁃based approach[J]. International Journal of Advanced Manufacturing Technology,2003,22: 574⁃586.
[1] Hua ZHOU,Zhi⁃gang YANG,Hui ZHU. Aerodynamic calculation of MIRA model correlated with wind tunnel test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1043-1053.
[2] Zhao⁃wei QU,Zhao⁃tian PAN,Yong⁃heng CHEN,Peng⁃fei TAO,Di SUN. Car⁃following model with improving safety distance based on optimal velocity model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1092-1099.
[3] Jia⁃xu WANG,Qian⁃qian JIANG,Jun⁃yang LI,Yan⁃feng HAN,Lei ZHANG,Ting TANG. Multi⁃objective optimization design of flexspline profile parameters of double⁃arc harmonic drive [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1194-1202.
[4] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[5] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[6] GONG Ya-feng, WANG Bo, WEI Hai-bin, HE Zi-heng, HE Yu-long, SHEN Yang-fan. Surface subsidence law of double-line shield tunnel based on Peck formula [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1411-1417.
[7] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[8] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[9] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[10] CHEN Jun-fu, GUAN Zhi-ping, YANG Chang-hai, NIU Xiao-ling, JIANG Zhen-tao, Song Yu-quan. Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests [J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[11] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[12] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[13] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[14] FU Wen-zhi, LIU Xiao-dong, WANG Hong-bo, YAN De-jun, LIU Xiao-li, LI Ming-zhe, DONG Yu-qi, ZENG Zhen-hua, LIU Gui-bin. Multi-point forming process of 1561 aluminum alloy surfaces [J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[15] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!