Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 91-99.doi: 10.13229/j.cnki.jdxbgxb20180969

Previous Articles     Next Articles

Hot deformation behavior and dislocation density evolution regularity of Cr8 alloy

Xue-wen CHEN(),Ji-ye WANG,Xi-qing YANG,Tao HUANG,Ke-xing SONG   

  1. School of Materials Science and Engineering,Henan University of Science and Technology,Luoyang 471023,China
  • Received:2018-09-21 Online:2020-01-01 Published:2020-02-06

Abstract:

Hot compression tests on Cr8 alloy were carried out on Gleeble-1500D thermal simulation test machine in the deformation temperature range from 900 ℃ to 1200℃ and strain rate range from 0.005 s-1 to 5 s-1.X-ray diffraction tests of the samples after hot deformation were carried out, and the hot deformation behavior and dislocation density evolution of Cr8 alloy were investigated.Based on the data of experiment, a two-stage constitutive model containing multiple parameters was established in consideration of dislocation density evolution.The results show that the true stress-true strain curves of Cr8 alloy show the typical characteristics of dynamic recrystallization under low strain rate.The hot deformation activation energy of Cr8 alloy is 423.41 kJ/mol, and the calculated values of the constitutive model agree well with the experimental values.Under the experimental conditions,the total dislocation density of Cr8 alloy reached above 1014 cm-2, and the total dislocation density increased with increasing strain rate and decreasing deformation temperature.

Key words: metallic material, Cr8 alloy, hot deformation, constitutive model, dislocation density

CLC Number: 

  • TG142.33

Fig.1

True stress?true strain curves of Cr8 alloy at different temperatures and different strain rates"

Fig.2

"

Fig.3

"

Fig.4

"

Fig.5

"

Fig.6

"

Fig.7

"

1 孙秀华, 汝亚彬, 刘宝石 . 新型冷作模具钢Cr8的开发[J].机械工程材料, 2008, 32(增刊1): 42-43.
Sun Xiu-hua , Ru Ya-bin , Liu Bao-shi . Development of Cr8 new-type cold work die steel[J]. Materials for Mechanical Engineering, 2008, 32(Sup.1): 42-43.
2 常旭东 . Cr8钢工作辊淬火过程数值模拟与工艺优化[D].秦皇岛:燕山大学机械工程学院, 2016.
Chang Xu-dong . Numerical simulation and process optimization of the Cr8 steel working roll quenching process[D]. Qinhuangdao: Shool of Mechnology Engineering, Yanshan University, 2016.
3 Chi H X , Ma D S , Yong Q L , et al . Effect of cryogenic treatment on properties of Cr8-type cold work die steel[J]. Journal of Iron and Steel Research (International), 2010, 17(6): 43-46, 59.
4 Li C H , Wu X C , Xie C ,et al . Investigation on wear resistance of Cr8 tool steels[J]. Tribology, 2013, 33(1):36-43.
5 Wang G , Wang D R , Liu L G ,et al . Austenite grain growth behavior of Cr8 steel[J]. Transactions of Materials & Heat Treatment,2014,35(2):94-99.
6 张岩, 赵爱民, 何建国, 等 . 热处理工艺对Cr8钢组织与性能的影响[J]. 金属热处理, 2016, 41(1): 79-84.
Zhang Yan , Zhao Ai-min , He Jian-guo , et al . Effect of heat treatment on microstructure and properties of Cr8 steel[J]. Heat Treatment of Metals, 2016, 41(1): 79-84.
7 黄顶俊, 杨弋涛 . Cr8型刃具钢热处理工艺优化[J]. 金属热处理, 2016, 41(3): 43-48.
Huang Ding-jun , Yang Yi-tao . Heat treatment process optimization of Cr8 cutting-tool steel[J]. Heat Treatment of Metals, 2016, 41(3): 43-48.
8 王葛, 刘智超, 常旭东, 等 . Cr8钢轧辊最终热处理过程数值模拟与实验研究[J]. 材料热处理学报, 2016, 37(6): 241-248.
Wang Ge , Liu Zhi-chao , Chang Xu-dong , et al . Numerical simulation and experimental research on final heat treatment process of a Cr8 steel roll[J]. Transactions of Materials and Heat Treatment, 2016, 37(6): 241-248.
9 Ferdowsi M R G , Nakhaie D , Benhangi P H , et al . Modeling the high temperature flow behavior and dynamic recrystallization kinetics of a medium carbon microalloyed steel[J]. Journal of Materials Engineering and Performance, 2014, 23(3): 1077-1087.
10 Zhang D , Liu Y Z , Zhou L Y , et al . Dynamic recrystallization behavior of GCr15SiMn bearing steel during hot deformation[J]. Journal of Iron and Steel Research (International), 2014, 21(11): 1042-1048.
11 Pu E X , Feng H , Liu M , et al . Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation[J]. Journal of Iron and Steel Research (International), 2016, 23(2): 178-184.
12 刘利萍, 刘勇兵, 姬连峰, 等 . 原位颗粒增强钛基复合材料高温流变行为[J]. 吉林大学学报:工学版, 2016, 46(4): 1197-1201.
Liu Li-ping , Liu Yong-bing , Ji Lian-feng ,et al . Flow stress behavior of in situ particulate reinforced titanium matrix composite at elevated temperature[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1197-1201.
13 Laasraoui A , Jonas J J . Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical and Materials Transactions A, 1991, 22(7): 1545-1558.
14 何运斌, 潘清林, 覃银江, 等 . ZK60镁合金热变形过程中的动态再结晶动力学[J]. 中国有色金属学报, 2011, 21(6): 1205-1213.
He Yun-bin , Pan Qing-lin , Qin Yin-jiang , et al . The dynamic recrystallization kinetics of ZK60 magnesium alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(6): 1205-1213.
15 陈飞 . 热锻非连续变形过程微观组织演变的元胞自动机模拟[D]. 上海:上海交通大学材料科学与工程学院, 2012.
Chen Fei . Simulation of microstructure evolution during discontinuous hot forging processes using cellular automaton method[D]. Shanghai: College of Materials and Science Engineering, Shanghai Jiaotong University, 2012.
16 齐珂 . 核电用钢316LN动态再结晶行为实验研究与数值模拟[D]. 上海:上海交通大学材料科学与工程学院, 2014.
Qi Ke . Experimental and numerical study on dynamic recrystallization of 316LN nuclear power steel[D]. Shanghai: College of Materials and Science Engineering, Shanghai Jiaotong University, 2014.
17 Dini G , Ueji R , Najafizadeh A , et al . Flow stress analysis of TWIP steel via the XRD measurement of dislocation density[J]. Materials Science & Engineering A, 2010, 527(10/11): 2759-2763.
18 闻瑶 . TA15钛合金形变过程的微观机理研究及其介观晶体塑性有限元模拟[D]. 合肥:合肥工业大学材料科学与工程学院, 2015.
Wen Yao . Microscopic mechanism and crystal plasticity finite element simulation of TA15 titanium alloy at deformation process[D]. Hefei:College of Materials Science and Engineering, Hefei University of Technology, 2015.
19 Mathis K , Farkas G , Garces G , et al . Evolution of dislocation density during compression of a Mg-Zn-Y alloy with long period stacking ordered structure[J]. Materials Letters, 2017, 190: 86-89.
20 余启航, 蒋显全, 佘欣未, 等 . 5182铸锭高温压缩流变行为与微观组织演变[J]. 西南大学学报:自然科学版, 2018, 40(1): 172-180.
Yu Qi-hang , Jiang Xian-quan , She Xin-wei , et al . High temperature rheologic behavior and microstructure evolution of 5182 alloy flat ingot[J]. Journal of Southwest University (Natural Science), 2018, 40(1): 172-180.
21 Ding R , Guo Z X . Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49(16): 3163-3175.
22 Laasraoui A , Jonas J J . Recrystallization of austenite after deformation at high temperatures and strain rates-analysis and modeling[J]. Metallurgical transactions A, 1991, 22(1): 151-160.
23 Sellars C M , Whiteman J A . Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3/4): 187-194.
24 陈学文, 王继业, 皇涛, 等 . 基于L-J位错密度模型模拟Cr8合金钢动态再结晶行为[J]. 钢铁, 2018, 53(7): 74-79.
Chen Xue-wen , Wang Ji-ye , Huang Tao , et al . Dynamic recrystallization behavior simulation for Cr8 alloy based on modified Laasraoui-Jonas dislocation density model[J]. Iron and Steel, 2018, 53(7): 74-79.
25 Gay P , Hirsch P B , Kelly A . The estimation of dislocation densities in metals from X-ray data[J]. Acta Metallurgica, 1953, 1(3): 315-319.
[1] Jin-guo WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Zhi-qiang WANG. Effect of TiC particles on microstructure and mechanical properties of as cast ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2010-2018.
[2] Hui YE,Yan-rong ZHU,Yong-feng PU. Numerical simulation of strain rate effect of fiber reinforced composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1622-1629.
[3] Yu⁃peng LI,Da⁃qian SUN,Wen⁃biao GONG. Temperature fields in bobbin⁃tool friction stir welding for 6082⁃T6 aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
[4] GUAN Qing-feng,ZHANG Fu-tao,PENG Tao,LYU Peng,LI Yao-jun,XU Liang,DING Zuo-jun. Hot deformation behavior of 9%Cr steel contained B and Co elements [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1799-1805.
[5] GUAN Qing-feng, DONG Shu-heng, ZHENG Huan-huan, LI Chen, ZHANG Cong-lin, LV-Peng. Cr surface alloying of 45# steel by high-current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[6] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[7] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[8] GUAN Qing-feng, ZHANG Yuan-wang, SUN Xiao, ZHANG Chao-ren, LYU Peng, ZHANG Cong-lin. Surface alloying of Al-W alloy by high current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[9] YANG Xiao-hong, HANG Wen-xian, QIN Shao-gang, LIU Yong-bing, LIU Li-ping. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding [J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[10] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[11] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[12] ZHANG Xue-guang, LIU Chun-guo, ZHENG Yuan, JIANG Zhong-hai, LI Xiang-ji. Forming limit prediction of aluminum alloy based on ductile damage and shear damage [J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[13] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[14] ZHANG Jia-tao, ZHAO Yu-guang, TAN Juan. Effect of starting microstructure on refining potency of electro-pulsing on reverse austenite grain [J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[15] ZHUANG Wei-min, XIE Dong-xuan, YU Tian-ming, YU Wan-dong. Numerical simulation of hot forming of high-strength steel based on damage-phase transformation constitutive model [J]. 吉林大学学报(工学版), 2015, 45(4): 1206-1212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!