Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 472-482.doi: 10.13229/j.cnki.jdxbgxb20181071

Previous Articles    

Implementation and stability on turning with constant radius of pneumatic flexible hexapod robot

Yun-wei ZHAO1(),De-xu GENG2(),Xiao-min LIU1,Qi LIU2   

  1. 1.Engineering Training Center, Beihua University, Jilin 132021, China
    2.College of Mechanical Engineering, Beihua University, Jilin 132021, China
  • Received:2018-10-25 Online:2020-03-01 Published:2020-03-08
  • Contact: De-xu GENG E-mail:jluzyw@163.com;gengdx64@163.com

Abstract:

According to the structures and functions of the hexapod robot, this paper explores a method to complete turning with constant radius based on the triangle gait and center of gravity trajectory tracking. The gravity trajectory model of hexapod robot in the rotation process is reversely established with predefined rotation angle and turning radius by tracking the center of gravity of the robot. Then the gravity trajectories of the hexapod robot are simulated and the deviation errors between the ideal trajectories and planed trajectories of the center of gravity are investigated. Also, the maximum gait rotation angle model is established according to the static stability margin model. The experiments on turning performance with fixed point or constant radius of the hexapod robot are performed and the turning performance of hexapod robot is studied with different gait rotation angle and turning radius by analyzing the work space of foot of robot. The simulation and experiment results prove the reasonability and validity of turning gait planning method. The hexapod robot is flexible to turn at any radius and it moves more smoothly and steadily when the planning gait angle is smaller than the maximum gait angle.

Key words: mechanical manufacturing and automation, hexapod robot, flexible joint, pneumatic drive, turning with constant radius

CLC Number: 

  • TH138.5

Fig.1

Structure of pneumatic hexapod bionic robot"

Fig.2

Structure diagram of pneumatic hexapod bionic robot"

Fig.3

Gait planning principle for turning with constant radius"

Fig.4

Gait planning for turning with constant radius of robot"

Fig.5

Geometric figure of turning with constant radius"

Fig.6

Relationship between projection of gravity and supporting polygon"

Fig.7

Kinematics experimental platform of robot"

Table 1

Experimental condition"

实验条件
系统采样频率/Hz800
压强/MPa0.15、0.25、0.35
机器人步频/Hz1
负载/g500

Fig.8

Control principle of robot leg"

Fig.9

Robot motion process in gait experiments"

Table 2

Air pressure of foot when turning with constant radius"

γ/(°)
足2足4足6
456101112161718
50.350.050.000.100.300.150.050.100.30
100.250.300.000.100.250.150.100.150.25
150.350.250.050.150.300.250.050.150.35

Table 3

Air pressure of foot when turning with fixed point"

r/mm
足2足4足6
456101112161718
500.100.100.100.000.250.150.160.180.25
1000.050.100.150.060.240.160.150.180.27
2000.000.180.200.050.220.200.100.180.30

Table 4

Actual rotation of gait and eccentricity when turning with fixed point"

项目规划步态转角/(°)
51015
γ/(°)3.606.7013.90
L/mm4.656.428.74

Table 5

Actual rotation of gait and eccentricity when turning with constant radius"

项目转弯半径/mm
50100200
γ/(°)3.904.102.80
L/mm3.553.8310.33

Fig.10

Simulation on gravity trajectory when turning with fixed point"

Fig.11

Deviation between planed gravity trajectory and ideal when turning with constant radius"

Fig.12

Gravity displacement of robot when turning with fixed point"

Fig.13

Gravity displacement of robot when turning with constant radius"

Fig.14

Maximum gait rotation angle of robot"

Fig.15

Gait rotation angle in turning with constant radius"

1 Zhang H, Liu Y, Zhao J, et al. Development of a bionic hexapod robot for walking on unstructured terrain[J]. Journal of Bionic Engineering, 2014, 11(2): 176-187.
2 Bartsch S, Birnschein T, Römmermann M, et al. Development of the six-legged walking and climbing robot SpaceClimber[J]. Journal of Field Robotics, 2012, 29(3): 506-532.
3 Kondo N, Yata K, Iida M, et al. Development of an end-effector for a tomato cluster harvesting robot[J]. Engineering in Agriculture Environment & Food, 2010, 3(1): 20-24.
4 荣誉, 金振林, 崔冰艳. 六足农业机器人并联腿构型分析与结构参数设计[J]. 农业工程学报, 2012, 28(15): 9-14.
Rong Yu, Jin Zhen-lin, Cui Bing-yan. Configuration analysis and structure parameter design of six-leg agricultural robot with parallel-leg mechanisms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(15): 9-14.
5 Bodrov A, Cheah W, Green P N, et al. Joint space reference trajectory to reduce the energy consumption of a six-legged mobile robot[C]∥2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), IEEE, Moscow, 2018: 1-6.
6 Bjelonic M, Kottege N, Homberger T, et al. Weaver: hexapod robot for autonomous navigation on unstructured terrain[J]. Journal of Field Robotics, 2018, 35(7): 1063-1079.
7 刘逸群, 邓宗全, 赵亮, 等. 液压驱动六足机器人步行腿性能[J]. 吉林大学学报: 工学版, 2015, 45(5): 1512-1518.
Liu Yi-qun, Deng Zong-quan, Zhao Liang,et al. Performance of walking leg of a hydraulically actuated hexapod robot[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(5): 1512-1518.
8 Wang Z, Ding X, Rovetta A, et al. Mobility analysis of the typical gait of a radial symmetrical six-legged robot[J]. Mechatronics, 2011, 21(7): 1133-1146.
9 Deng H, Xin G, Zhong G, et al. Object carrying of hexapod robots with integrated mechanism of leg and arm[J]. Robotics and Computer-Integrated Manufacturing, 2018(54): 145-155.
10 陈甫, 臧希喆, 闫继宏, 等. 适合航行的六足仿生机器人Spider的研制[J]. 吉林大学学报: 工学版, 2011, 41(3): 765-770.
Chen Fu, Zang Xi-zhe, Yan Ji-hong, et al. Development of navigable hexapod biomimetic robot Spider[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 765-770.
11 Erden M S, Leblebicio, Lu K. Free gait generation with reinforcement learning for a six-legged robot[J]. Robotics & Autonomous Systems, 2008, 56(3): 199-212.
12 Roy S S, Pratihar D K. Effects of turning gait parameters on energy consumption and stability of a six-legged walking robot[J]. Robotics & Autonomous Systems, 2012, 60(1): 72-82.
13 Roy S S, Pratihar D K. Soft computing-based expert systems to predict energy consumption and stability margin in turning gaits of six-legged robots[J]. Expert Systems with Applications, 2012, 39(5): 5460-5469.
14 Agheli M, Qu L, Nestinger S S. SHeRo: scalable hexapod robot for maintenance, repair, and operations[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(5): 478-488.
15 Belter D, Wietrzykowski J, Skrzypczyński P. Employing natural terrain semantics in motion planning for a multi-legged robot[J]. Journal of Intelligent & Robotic Systems, 2019, 93(3/4): 723-743.
16 Belter D, Nowicki M R. Optimization-based legged odometry and sensor fusion for legged robot continuous localization[J]. Robotics and Autonomous Systems, 2019, 111: 110-124.
17 Buchanan R, Bandyopadhyay T, Bjelonic M, et al. Walking posture adaptation for legged robot navigation in confined spaces[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 2148-2155.
18 姜树海, 孙培, 唐晶晶, 等. 仿生甲虫六足机器人结构设计与步态分析[J]. 南京林业大学学报: 自然科学版, 2012, 36(6): 115-120.
Jiang Shu-hai, Sun Pei, Tang Jing-jing, et al. Structural design and gait analysis of hexapod bionic robot[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(6): 115-120.
19 陈刚, 金波, 陈鹰. 六足步行机器人定半径转弯步态[J]. 浙江大学学报: 工学版, 2014, 48(7): 1278-1286.
Chen Gang, Jin Bo, Chen Ying. Turning gait with constant radius of six-legged waling robot[J]. Joural of Zhejiang University (Engineering Science), 2014, 48(7): 1278-1286.
20 李满宏, 张建华, 张小俊, 等. 基于马尔可夫决策过程的六足机器人自由步态规划[J]. 机器人, 2015, 37(5): 529-537.
Li Man-hong, Zhang Jian-hua, Zhang Xiao-jun, et al. Free gait planning for a hexapod robot based on markov decision process[J]. Robot, 2015, 37(5): 529-537.
21 邓宗全, 刘逸群, 高海波, 等. 液压驱动六足机器人步行腿节段长度比例研究[J]. 机器人, 2014, 36(5): 544-551.
Deng Zong-quan, Liu Yi-qun, Gao Hai-bo, et al. On the segment length ratio of the walking leg of a hydraulically actuated hexapod robot[J]. Robot, 2014, 36(5): 544-551.
22 赵云伟, 耿德旭, 刘晓敏, 等. 三自由度气动柔性驱动器结构功能与形变特性研究[J]. 农业机械学报, 2017, 48(9): 392-401.
Zhao Yun-wei, Geng De-xu, Liu Xiao-min, et al. Structure and deformation characteristics of 3-DOF pneumatic flexible actuator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 392-401.
23 赵云伟, 耿德旭, 刘晓敏, 等. 气动柔性关节仿生六足机器人步态规划与运动性能研究[J]. 农业机械学报, 2018, 49(2): 385-394, 418.
Zhao Yun-wei, Geng De-xu, Liu Xiao-min, et al. Gait planning and kinematics of bionic hexapod robot based on pneumatic flexible join[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 385-394, 418.
24 赵云伟, 耿德旭, 刘晓敏, 等. 气动空间弯曲关节动力学性能实验研究[J]. 机床与液压, 2017, 45(23): 10-23.
Zhao Yun-wei, Geng De-xu, Liu Xiao-min, et al. Experimental study on dynamic properties of pneumatic space bending joint[J]. Machine Tool & Hydraulics, 2017, 45(23): 10-23.
25 Estremera J, Cobano J A. Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones: an application to humanitarian demining[J]. Robotics and Autonomous Systems, 2010, 58(5): 700-711.
[1] Chun-zheng DUAN,Fang-yuan ZHANG,Wen-neng KOU,Bin WEI. Martensitic transformation of surface white layer in high speed hard cutting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1575-1583.
[2] REN Shu-nan, YANG Xiang-dong, WANG Guo-lei, LIU Zhi, CHEN Ken. Base position planning of mobile manipulator for large parts painting [J]. 吉林大学学报(工学版), 2016, 46(6): 1995-2002.
[3] LIU Yi-qun, DENG Zong-quan, ZHAO Liang, DING Liang, TONG Zhi-zhong, GAO Hai-bo. Performance of walking leg of a hydraulically actuated hexapod robot [J]. 吉林大学学报(工学版), 2015, 45(5): 1512-1518.
[4] GUO Li-bin, ZHANG Bin, CUI Hai, ZHANG Zhi-hang. Structural parameters of 3D roughness for micro wire electrical discharge machining surface [J]. 吉林大学学报(工学版), 2015, 45(3): 851-856.
[5] HU Sheng-hai, GUO Bin, MASONG Ming-hui, XU Peng. Dynamic modeling and simulation of roller chain system in SimMechanics considering complete tooth profile [J]. 吉林大学学报(工学版), 2013, 43(04): 958-963.
[6] ZHANG Lei, ZHAO Yun-wei, YANG Zhuo, ZHAO Ji. Shear yield property of electrorheological polishing fluid [J]. , 2012, 42(05): 1145-1150.
[7] WANG Guo-fu, GAO Feng, XU Guo-yan. Kinematic analysis and control of omnidirectional hexapod robot with a steering-wheel [J]. , 2012, 42(04): 1008-1014.
[8] CHEN Fu,ZANG Xi-zhe,YAN Ji-hong,ZHAO Jie. Development of navigable hexapod biomimetic robot Spider [J]. 吉林大学学报(工学版), 2011, 41(03): 765-770.
[9] ZHANG Lei,HE Xin-sheng,ZHANG Ying,YANG He-ran. Development of new type ER fluid-assisted polishing  tool and its polishing experiment [J]. 吉林大学学报(工学版), 2010, 40(04): 1009-1014.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!