Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1608-1616.doi: 10.13229/j.cnki.jdxbgxb20190469

Previous Articles    

Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm

Fang-wu MA(),Li HAN,Liang WU(),Jin-hang LI,Long-fan YANG   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2019-05-17 Online:2020-09-01 Published:2020-09-16
  • Contact: Liang WU E-mail:mikema@jlu.edu.cn;astdwxg@jlu.edu.cn

Abstract:

Heavy-loaded Anti-Vibration Platform (AVP) is mainly used to carry high-precision instruments and equipments to isolate vibration and impact caused by uneven complex road surface, thus, providing a stable working environment. In this paper, taking the 6 DOF series AVP as the research object, the parameters of the AVP damping system are optimized by the usage of the fast elitist multi-objective genetic algorithm (NSGA_II) and multi-objective particle swarm optimization algorithm (MOPSO) to significantly improve the anti-vibration performance of AVP. The damping and stiffness parameters of the damping system are optimized by NSGA-II and MOPSO under various road surface analog signals. The optimization results show that the anti-vibration rate of the two optimization targets of vertical acceleration and vertical displacement of upper platform under different excitation can be up to 56.21%. In addition, NSGA-II is applied to optimize the damper support angle parameters of the AVP, which increases the anti-vibration rate of the two optimization targets by 7.00%. The sine excitation is verified by experiments, and the error between experiment and simulation is as small as 8.30%, thus verifying the effectiveness of optimization parameters.

Key words: anti-vibration platform, virtual prototyping, multi-objective optimization, anti-vibration rate, multi-objective particle swarm optimization algorithm

CLC Number: 

  • U463.99

Fig.1

3D mechanical model of AVP"

Fig.2

Virtual prototype model and mathematical model concept map"

Fig.3

Contrast graph of two models"

Fig.4

Sine excitation"

Fig.5

Impulse excitation"

Fig.6

Step excitation"

Fig.7

Algorithm of NSGA-II and MOPSO"

Table 1

Parameters of AVP system"

参数数值
簧上质量/kg650
簧下质量/kg300
阻尼/(N·s·m-1)1 500
空气弹簧刚度/(N·m-1)16 800
钢索弹簧刚度/(N·m-1)200 000

Table 2

Initial values and limits of parameter variables"

参数初值上限下限
DV90.4880.4390.537
DV100.9380.8441.032
DV110.4860.4370.535
DV121.0450.9411.150
DV130.4880.4390.537
DV140.9380.8441.032
DV151.0360.9321.140
DV160.4860.4370.535

Table 3

Variable values before and after optimization"

参数NSGA-II优化前
DV90.5000.480
DV101.0160.938
DV110.3920.486
DV121.1001.045
DV130.3890.488
DV141.0330.938
DV151.1281.036
DV160.3940.486

Fig.8

Comparison of vertical acceleration response before and after optimization"

Fig.9

Comparison of vertical displacement response before and after optimization"

Table 4

Parameter values before and after optimization of stiffness and damping parameters under sine excitation"

变量NSGA-IIMOPSO优化前
S11 1301 0001 500
S21 0441 0261 500
S31 0602 0001 500
S41 2471 0001 500
S51 3641 0001 500
S61 3821 0001 500
S71 0861 0001 500
S81 0781 0001 500
S910 05010 00016 800
S1010 01710 47716 800
S1110 02810 00016 800
S1210 03510 00016 800

Table 5

Parameter values before and after optimization of stiffness and damping parameters under impulse excitation"

变量NSGA-IIMOPSO优化前
S11 3521 3601 500
S21 1321 0851 500
S31 5741 0001 500
S41 1101 0001 500
S51 2541 0001 500
S61 4821 0001 500
S71 2431 0861 500
S81 1652 0301 500
S912 20510 16116 800
S1010 00211 15616 800
S1113 43013 48216 800
S1214 20210 59716 800

Table 6

Parameter values before and after optimization of stiffness and damping parameters under step excitation"

变量NSGA-IIMOPSO优化前
S11 0761 0001 500
S22 1401 0001 500
S31 8253 0001 500
S41 0431 0461 500
S51 7001 8101 500
S61 1401 0001 500
S71 1401 8601 500
S81 2801 0001 500
S911 70012 40016 800
S1014 00010 20016 800
S1111 00010 00016 800
S1210 40011 90016 800

Fig.10

Response comparison chart"

Table 7

Comparison of vertical acceleration before and after optimization"

项目优化前加速度/(m·s-2NSGA-IIMOPSO
加速度/(m·s-2隔振率/%加速度/(m·s-2隔振率/%
正弦1.4180.80243.440.80143.51
脉冲0.8380.70515.870.66121.12
阶跃0.8380.73811.930.73811.93

Table 8

Comparison of vertical displacement before and after optimization"

项目优化前 位移/mmNSGA-IIMOPSO
位移/(m·s-2隔振率/%位移/(m·s-2隔振率/%
正弦8.453.7056.213.8055.00
脉冲4.103.1024.402.7034.15
阶跃8.608.006.987.7010.47

Fig.11

Experimental site and sensors layout"

Fig.12

Comparison of experimental and NSGA-II optimized response"

Fig.13

Time domain sweep experiment"

Fig.14

Frequency domain sweep"

1 李耀. 六自由度隔振平台的设计与分析[D]. 南京: 南京航空航天大学机电学院, 2015.
Li Yao. Design and analysis of the six-degree-of-freedom vibration-isolation platform[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 2015.
2 Youn I, Wu L, Youn E, et al. Tomizuka: attitude motion control of the active suspension system with tracking controller[J] Internal Journal of Automotive Technology, 2015, 16(4): 593-601.
3 马芳武, 倪利伟, 吴量, 等. 轮腿式全地形移动机器人位姿闭环控制[J]. 吉林大学学报: 工学版, 2019, 49(6): 1745-1755.
Ma Fang-wu, Ni Li-wei, Wu Liang, et al. Position and attitude closed loop control of wheel⁃leggedall terrain mobile robot[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1745-1755.
4 Wu L, Khan M A, Youn E, et al. Attitude motion control of vehicle including the active passenger seat system[J]. International Journal of Vehicle Design, 2018, 78(1-4): 131-160.
5 张抗抗, 徐梁飞, 华剑锋, 等. 基于多目标优化的纯电动车动力系统参数匹配[J]. 汽车工程, 2015, 37(7): 757-765.
Zhang Kang-kang, Xu Liang-fei, Hua Jian-feng, et al. A parameter matching method for the powertrain of battery electric vehicle based on multi-objective optimization[J]. Automotive Engineering, 2015, 37(7): 757-765.
6 王庆年, 段本明, 王鹏宇, 等. 插电式混合动力汽车动力传动系参数优化[J]. 吉林大学学报: 工学版, 2017, 47(1): 1-7.
Wang Qing-nian, Duan Ben-ming, Wang Peng-yu, et al. Optimization of powertrain transmission parameters of plug in hybrid electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 1-7.
7 王咏. 高精密设备多自由度平台系统微振动混合控制研究[D]. 哈尔滨: 哈尔滨工业大学深圳研究生院, 2007.
Wang Yong. Multi-degree-of-freedom microvibration hybrid control system for high technology facilities[D]. Harbin: Harbin Institute of Technology, Shenzhen Graduate School, 2007.
8 李林, 宣明, 贾宏光, 等. 光电稳定平台隔振系统的设计与优化[J]. 计算机仿真, 2017, 34(3): 77-81.
Li Lin, Xuan Ming, Jia Hong-guang, et al. Design and optimization of vibration isolation system for photoelectric stabilized platform[J]. Computer Simulation, 2017, 34(3): 77-81.
9 谢振盛. 汽車主動式懸吊系統之最佳化控制器設計研究[D]. 台南: 昆山科技大学工程学院, 2007.
Xie Zhen-sheng. Study on optimal controllers design for automotive active suspension systems[D]. Tainan: Science and Technology, Kun Shan University of Technology, 2007.
10 Wu L, Li J H, Ma F W, et al. Optimal anti-vibration design of vehicle-mounted vibration isolation platform[C]∥ SAE Technical Paper, 2018-01-1400.
11 Deb K, Pratap A, Agarwal S, et al. A fast elitist multi-objective genetic algorithm[J]. Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
12 李杰, 车华军, 哈兰涛. 遗传算法及在汽车悬架参数优化设计中的应用[J]. 汽车技术, 2006(6): 18-21.
Li Jie, Che Hua-jun, Lan-tao Ha. The application of genetic algorithm in the optimum design automotive suspension parameter[J]. Automotive Technology, 2006(6): 18-21.
13 张勇, 巩敦卫. 先进多目标粒子群优化理论及其应用[M]. 北京: 科学出版社, 2016.
14 周红妮, 冯樱, 赵慧勇, 等. 基于ISIGHT 集成技术的某重卡双轴转向机构多目标优化[J]. 汽车研究与开发, 2015, 6(4): 26-30.
Zhou Hong-ni, Feng Ying, Zhao Hui-yong, et al. Multi-objective optimization on dual-axle steering mechanism of a heavy vehicle based on integration technology of ISIGHT[J]. Automobile Research and Development, 2015, 6(4): 26-30.
[1] Xue-shen CHEN,Tao CHEN,Tao WU,Xu MA,Ling-chao ZENG,Lin-tao CHEN. Design and experiment on harvester for winter planting potato of straw coverage [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 749-757.
[2] Yin-ping LI,Tian-xu JIN,Li LIU. Design and dynamic characteristic simulation of pantograph⁃catenary continuous energy system for pure electric LHD [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 454-463.
[3] Fang-wu MA,Hong-yu LIANG,Ying ZHAO,Meng YANG,Yong-feng PU. Multi⁃objective crashworthiness optimization design of concave triangles cell structure with negative Poisson′s ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 29-35.
[4] Zhong-yi CAI,Fan-xiang MENG,Qing-min CHEN,Xuan ZHAO. Preform optimization for near-net-shape forming process of complex knuckle forging [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 84-90.
[5] Fu-chun JIA,Xian-jie MENG,Yu-long LEI. Optimal design of two degrees of freedom dynamic vibration absorber based on multi-objective genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1969-1976.
[6] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[7] WANG Deng-feng, ZHANG Shuai, WANG Yong, CHEN Hui. Optimization design of assembled wheel based on performance of fatigue and 13° impact [J]. 吉林大学学报(工学版), 2018, 48(1): 44-56.
[8] YU Fan-hua, LIU Ren-yun, ZHANG Yi-min, ZHANG Xiao-li, SUN Qiu-cheng. Swarm intelligence algorithm of dynamic reliability-based robust optimization design of mechanic components [J]. 吉林大学学报(工学版), 2017, 47(6): 1903-1908.
[9] ZHOU Fang, SONG Chuan-xue, LIANG Tian-wei, XIAO Feng. Parameter matching of on-board hybrid energy storage system using NSGA-II algorithm [J]. 吉林大学学报(工学版), 2017, 47(5): 1336-1343.
[10] LIU Ying, ZHANG Kai, YU Xiang-jun. Multi-objective optimization of hydrostatic bearing of hollow shaft based on surrogate model [J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[11] HU Kan, YU Ye, YING Liang, HU Ping, HOU Wen-bin. Optimization design of hot-stamping beam structure considering rollover crash safety of school bus [J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
[12] YU Fan-hua, LIU Ren-yun, ZHANG Yi-min, SUN Qiu-cheng, ZHANG Xiao-li. Intelligent algorithm for optimized dynamic reliability design of mechanic structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1269-1275.
[13] ZHANG Dong-hao, XIANG Chang-le, HAN Li-jin, ZHENG Hai-liang. Multi-objective optimization hierarchic control method for power-split hybrid electric vehicles [J]. 吉林大学学报(工学版), 2016, 46(2): 373-382.
[14] ZHOU Jie, LUO Yan, WANG Xun, WANG Hui, LI Yang, TAO Ya-ping. Multi-objective optimization of stamping forming process of head based on response surface model [J]. 吉林大学学报(工学版), 2016, 46(1): 205-212.
[15] ZHU Bing, JIA Xiao-feng, WANG Yu, WU Jian, ZHAO Jian, DENG Wei-wen. Rapid prototype test for integrated vehicle dynamic control using two dSPACE simulators [J]. 吉林大学学报(工学版), 2016, 46(1): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!