Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1669-1676.doi: 10.13229/j.cnki.jdxbgxb20190523

Previous Articles    

Effect of welding energy on performance of Cu/Ti joints obtained by ultrasonic welding

Xiao-yan GU(),Cheng-long SUI,Xing DI,Zheng-yu MENG,Kai-xuan ZHU,Chang-chun CHU   

  1. College of Materials Science and Engineering,Jilin University,Changchun 130022, China
  • Received:2019-05-27 Online:2020-09-01 Published:2020-09-16

Abstract:

The high-power ultrasonic spot welding machine was used to successfully weld T2 pure Cu and Ti6Al4V dissimilar metals. The effects of different welding energies on the interface temperature, cross-sectional macroscopic morphology, interface formation and mechanical properties of the joints were analyzed. It is shown that with the increase in welding energy, the peak temperature and high temperature residence time increase, the indentation depth increases gradually, the joint interface is flat and no intermetallic compounds appear, There is a diffusion layer with a maximum thickness of 2 μm at the interface. The tensile shear force gradually increases with the bonded area, and the maximum shear force is 2322 N. The joint fractures along the interface of the Cu side of the base material, and the fracture mode changes from brittle fracture to ductile-brittle mixed fracture. The stress analysis of the interface under different welding energies was carried out by using ABAQUS finite element numerical simulation software. The interface forming mechanism of Cu/Ti ultrasonic welded joints was systematically expounded.

Key words: materials synthesis and processing technology, ultrasonic welding, Cu/Ti dissimilar metal, welding energy, interfacial stress distribution

CLC Number: 

  • TG453

Fig.1

Ultrasonic metal welding machine and detailed knurl pattern of sonotrode and its dimension"

Fig.2

Rmocouple thermometer and temperature measuring position"

Fig.3

Schematic diagram of shear test fixture"

Fig.4

Thermal cycling curves at different welding energy"

Fig.5

Macro profiles of joint under different welding energy"

Fig.6

Microstructure of joints under different welding energy"

Fig.7

Stress distribution of joints in interface at different welding energy"

Fig.8

Results of EDS line scan analysis under different welding energy"

Fig.9

X?ray diffraction analysis of interface under 3000 J welding energy"

Fig.10

Shear force of joints at different welding energy"

Fig.11

Macroscopic fracture surface morphology of joints at different welding energy"

Fig.12

Fracture morphology of Cu side joints under different welding energy"

Fig.13

Surface scan of titanium side fracture at different welding energy"

Fig.14

X-ray diffraction analysis of fractures at 3000 J energy"

1 李亚江, 王娟, 刘鹏. 异种难焊接材料的焊接及应用[M]. 北京: 化学工业出版社, 2004.
2 赵宇光, 周伟, 彭新. 钛合金表面低氧压熔结Al-Cr涂层及其高温抗氧化性[J]. 吉林大学学报: 工学版, 2004, 34(4): 521-526.
Zhao Yu-guang, Zhou Wei, Peng Xin. Low oxygen pressure self-fused Al-Cr coatings formed on surface of Ti alloy and their oxidation resistance[J]. Journal of Jilin University(Engineering and Technology Edition), 2004, 34(4): 521-526.
3 Jackson M J, Kopac J, Balazic M, et al. Titanium and titanium alloy applications in medicine[J]. International Journal of Nano and Biomaterials, 2007, 1(1): 3-34.
4 Jiang Z Q, Yang H, Zhen M, et al. State-of-the-arts and prospectives of manufacturing and application of titanium alloy tube in aviation industry[J]. Journal of Plasticity Engineering, 2009, 16(4): 44-50, 84.
5 Wang B Z, Li X M, Li Z, et al. Application and prospect of titanium and titanium alloy in automobile industry[J]. Titanium Industry Progress, 2006(5): 38-41.
6 季杰, 马学智. 铜及铜合金的焊接[J]. 焊接技术, 1999(2): 13-15.
Ji Jie, Ma Xue-zhi. Welding of copper and copper alloys[J]. Welding Technology, 1999(2): 13-15.
7 刘伟, 陈国庆, 张秉刚, 等. 铜/钛合金电子束焊接工艺优化[J]. 焊接学报, 2008, 29(5): 89-92.
Liu Wei, Chen Guo-qing, Zhang Bing-gang, et al. Investigation on process optimization of Cu/Ti electron beam welding[J]. Transactions of the China Welding Institution, 2008, 29(5): 89-92.
8 宋敏霞, 赵熹华, 郭伟, 等. Ti-6Al-4V/Ni/ZQSn10-10的扩散连接[J]. 吉林大学学报: 工学版, 2006, 36(1): 42-45.
Song Min-xia, Zhao Xi-hua, Guo Wei, et al. Diffusion bonding of Ti-6Al-4V to ZQSn10-10 with nickel interlayer[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(1): 42-45.
9 Luo Y, Xie X J, Wan R, et al. Influence of thermal effect on micro-hardness of magnesium alloy weld of vacuum electron beam welding[J]. Rare Metal Materials & Engineering, 2017(2): 496-502.
10 Zhao Y, Wang W, Yan K, et al. Microstructure and properties of Cu/Ti laser welded joints[J]. Journal of Materials Processing Technology, 2018, 257: 244-249.
11 Wei L, Zhang B, He J, et al. Microstructure and performance of dissimilar joint QCr0.8/TC4 welded by uncentered electron beam[J]. Rare Metals, 2007(Sup.1): 344-348.
12 刘红, 任连保, 马余选, 等. TA2与T2异种金属焊接的工艺研究[J]. 钛工业进展, 2005, 22(4): 30-32.
Liu Hong, Ren Lian-bao, Ma Yu-xuan, et al. Dissimilar metal welding of TA2 and T2[J]. Titanium Industry Progress, 2005, 22(4): 30-32.
13 Shiue R K, Wu S K, Chan C H. Infrared brazing Cu and Ti using a 95Ag-5Al braze alloy[J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3177-3186.
14 Shiue R K, Wu S K, Chan C H. The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys[J]. Journal of Alloys & Compounds, 2004, 372(1/2): 148-157.
15 Kim S Y, Jung S B, Shur C C, et al. Mechanical properties of copper to titanium joined by friction welding[J]. Journal of Materials Science, 2003, 38(6): 1281-1287.
16 Kahraman N, Gülen B. Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process[J]. Journal of Materials Processing Technology, 2005, 169(1): 67-71.
17 Aydin K, Kaya Y, Kahraman N. Experimental study of diffusion welding/bonding of titanium to copper[J]. Materials & Design, 2012, 37: 356-368.
18 Zhou L, Min J, He W X, et al. Effect of welding time on microstructure and mechanical properties of Al-Ti ultrasonic spot welds[J]. Journal of Manufacturing Processes, 2018, 33: 64-73.
19 徐勇, 杨湘杰, 何毅, 等. TC4钛合金流动软化行为及本构模型研究[J]. 稀有金属材料与工程, 2017, 45(5): 1321-1326.
Xu Yong, Yang Xiang-jie, He Yi, et al. Flow softening behavior and constitutive equation of TC4 titanium alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2017, 45(5): 1321-1326.
20 宗跃, 吴玉程, 汪峰涛, 等. SiC和SiO2纳米颗粒弥散强化铜基复合材料的制备和性能研究[C]∥中国功能材料及其应用学术会议, 武汉, 2007: 511-513.
[1] Wei-min ZHUANG,Hong-da SHI,Dong-xuan XIE,Guan-nan YANG. Thickness distribution of adhesive layer in dissimilar clinch⁃adhesive hybrid joint with steel and aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 100-106.
[2] Zhong-yi CAI,Fan-xiang MENG,Qing-min CHEN,Xuan ZHAO. Preform optimization for near-net-shape forming process of complex knuckle forging [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 84-90.
[3] Zhou SHI,Shu-qing KOU. Performance analysis and lightweight design of 36MnVS4 fracturesplitting connecting rod [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1992-2001.
[4] Qing-feng GUAN,Xin-wen YAO,Yang YANG,Ling-yan ZHANG,Di LIU,Chen LI,Peng LYU. Preparation and property of Cr alloying layer on TC4 after surface alloying induced by high current pulsed electron beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2002-2009.
[5] Xiao-yan GU,Dong-feng LIU,Jing LIU,Da-qian SUN,Hui-feng MA. Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1600-1607.
[6] Xin LI,Yan-peng SUN,Dan WANG,Jun-xu CHEN,Zheng-wei GU,Hong XU. Finite element numerical simulation for automobile front floor forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1608-1614.
[7] Wen⁃quan LIU,Liang YING,Hai RONG,Ping HU. Forming limit prediction of high strength steel based on damage modified M⁃K model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1266-1271.
[8] Xin LI,Dan WANG,Jun⁃xu CHEN,Yan⁃peng SUN,Zheng⁃wei GU,Hong XU. Numerical simulation for handbrake fixed plate forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1258-1265.
[9] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[10] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[11] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[12] CHEN Jun-fu, GUAN Zhi-ping, YANG Chang-hai, NIU Xiao-ling, JIANG Zhen-tao, Song Yu-quan. Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests [J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[13] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[14] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[15] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!