Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1608-1614.doi: 10.13229/j.cnki.jdxbgxb20180764

Previous Articles    

Finite element numerical simulation for automobile front floor forming

Xin LI1(),Yan-peng SUN1,Dan WANG1,Jun-xu CHEN2,Zheng-wei GU1,Hong XU1   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
    2. FAW Jiefang Automobile Company Limited, Qingdao 266000, China
  • Received:2018-07-20 Online:2019-09-01 Published:2019-09-11

Abstract:

Taking the front floor of a car as an example, the finite element software Autoform was used for numerical simulation analysis of forming process. The defects such as splitting, wrinkling, and failure during the forming process of the sheet metal were predicted through simulation analysis. By adjusting the size of the blank holder force, the drawbead parameters, the offset between the punch and the die, and the friction coefficient, the simulation results were optimized to obtain a set of the most suitable parameters for actual production process. After setting the variable strength double drawbeads, the optimum conditions for the process parameters are: blank holder force is 650 kN, forming force is 5200 kN, the offset between punch and die is 0.8 mm and the friction coefficient is 0.15. Based on the simulation results, a forming experiment was carried out and a qualified forming part was obtained, which effectively shortened the development cycle of the die and reduced the design cost.

Key words: materials synthesis and processing technology, automobile panel, numerical simulation, finite element method, drawbead

CLC Number: 

  • TG386

Fig.1

Three-dimensional model of front floor"

Table 1

Stamping process plan"

工序号工序内容设备
OP10拉延J36-800
OP20修边冲孔JE36-400
OP30斜楔修边冲孔JE36-400
OP40翻边JE36-400

Fig.2

Tip point and tip angle"

Fig.3

Drop-shaped protrusions in process supplements"

Fig.4

Stamping process"

Fig.5

Finite element model"

Fig.6

Simulation result that drawbeads are not set"

Fig.7

Simulation results after drawbeads have been set"

Fig.8

Drawbead coefficient after drawbeads are optimized"

Fig.9

Simulation results of parts at 650 kN blank holder force"

Fig.10

Changes of force during drawing process"

Fig.11

Simulation results when die offset is 0.8 mm"

Fig.12

Trend of maximum failure as die offset changes"

Fig.13

Trend of thinning rate as coefficient of friction changes"

Fig.14

Simulation results after optimizing parameters"

Fig.15

Actual production of stampings"

Fig.16

Final simulation result"

Fig.17

Final stamping part"

1 谢晖, 成艾国, 杨旭静, 等. CAE技术在汽车翼子板拉延模具设计中的应用[J]. 汽车工程, 2003, 25(6): 630-633.
XieHui, ChengAi-guo, YangXu-jing, et al. A study on the application of CAE to the design of drawing die for front fender[J]. Automotive Engineering, 2003, 25(6): 630-633.
2 徐金波, 董湘怀. 基于有限元分析的汽车覆盖件模具设计及优化[J]. 锻压技术, 2004, 29(1): 63-67.
XuJin-bo, DongXiang-huai. Design and optimization of the process and dies for the antomobile body panel based on finite element analysis[J]. Forging & Stamping Technology, 2004, 29(1): 63-67.
3 KawkaM, OlejnikL, RosochowskiA, et al. Simulation of wrinkling in sheet metal forming[J]. Journal of Materials Processing Technology, 2001, 109(3): 283-289.
4 刘志卫, 李明哲, 韩奇钢. 具有防皱功能的多点成形工艺数值模拟[J]. 吉林大学学报: 工学版, 2012, 42(5): 1208-1213.
LiuZhi-wei, LiMing-zhe, HanQi-gang. Numerical simulation on multi-point sheet metal forming with wrinkle resistance function[J]. Journal of Jinlin University (Engineering and Technology Edition), 2012, 42(5): 1208-1213.
5 关来德. 汽车侧围外板A柱拐角起皱的分析及解决方案[J]. 锻压技术, 2017, 42(4): 50-54.
GuanLai-de. Analysis and solution on corner wrinkling of side panel A column for automobile[J]. Forging & Stamping Technology, 2017, 42(4): 50-54.
6 廖代辉, 成艾国, 钟志华, 等. 驾驶室车门内板拉延成形分析及其工程应用[J]. 湖南大学学报: 自然科学版, 2006, 33(3): 63-66.
LiaoDai-hui, ChengAi-guo, ZhongZhi-hua, et al. The drawing formality analysis of cab inside door and its application[J]. Journal of Hunan University (Natural Sciences), 2006, 33(3): 63-66.
7 胡丽, 李欣, 程万军, 等. 基于Autoform的轿车左B柱内上板冲压成形模拟研究[J]. 模具工业, 2015, 41(11): 19-22, 26.
HuLi, LiXin, ChengWan-jun, et al. Autoform-based stamping simulation study on the upper inner plate of automotive left column B[J]. Die & Mould Industry, 2015, 41(11): 19-22, 26.
8 谷诤巍, 吕萌萌, 张文学, 等. 中国标准动车组前端三维蒙皮件冲压成形[J]. 吉林大学学报: 工学版, 2017, 47(3): 869-875.
GuZheng-wei, Meng-mengLyu , ZhangWen-xue, et al. Stamping of front-end three-dimensional skin of China electric multiple units[J]. Journal of Jinlin University (Engineering and Technology Edition), 2017, 47(3): 869-875.
9 邱晓刚, 黄跃东. 汽车顶盖零件冲压成形的数值模拟研究[J]. 锻压技术, 2009, 34(4): 148-152.
QiuXiao-gang, HuangYue-dong. Study on numerical simulation of automobile covering part stamping process[J]. Forging & Stamping Technology, 2009, 34(4): 148-152.
10 陈军绪, 兰明, 邹飞. 深U形覆盖件冲压工艺设计及CAE技术的应用[J]. 金属加工: 热加工, 2017(13): 32-35.
ChenJun-xu, LanMing, ZouFei. Stamping process design of deep U-shaped cover and application of CAE technology[J]. Metal Forming (Stamping Edition), 2017(13): 32-35.
[1] Zhuo YI,Wen-zhi FU,Ming-zhe LI. Numerical simulation and experiment on double⁃layered split ultrahigh pressure die [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1593-1599.
[2] Hua ZHOU,Zhi⁃gang YANG,Hui ZHU. Aerodynamic calculation of MIRA model correlated with wind tunnel test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1043-1053.
[3] Zhao⁃wei QU,Zhao⁃tian PAN,Yong⁃heng CHEN,Peng⁃fei TAO,Di SUN. Car⁃following model with improving safety distance based on optimal velocity model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1092-1099.
[4] Xin LI,Dan WANG,Jun⁃xu CHEN,Yan⁃peng SUN,Zheng⁃wei GU,Hong XU. Numerical simulation for handbrake fixed plate forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1258-1265.
[5] Wen⁃quan LIU,Liang YING,Hai RONG,Ping HU. Forming limit prediction of high strength steel based on damage modified M⁃K model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1266-1271.
[6] Xue⁃guang ZHANG,Ming⁃meng JIA,Chun⁃guo LIU,Guang⁃zhong HE. Trajectory design and FE simulation for profile stretch bending based on incremental control method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1272-1279.
[7] Xiao⁃qin ZHOU,Lu YANG,Lei ZHANG,Li⁃jun CHEN. Finite element analysis of hinging octahedron structure withnegative compressibility [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 865-871.
[8] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[9] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[10] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[11] GONG Ya-feng, WANG Bo, WEI Hai-bin, HE Zi-heng, HE Yu-long, SHEN Yang-fan. Surface subsidence law of double-line shield tunnel based on Peck formula [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1411-1417.
[12] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[13] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[14] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[15] CHEN Jun-fu, GUAN Zhi-ping, YANG Chang-hai, NIU Xiao-ling, JIANG Zhen-tao, Song Yu-quan. Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests [J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!