Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 122-133.doi: 10.13229/j.cnki.jdxbgxb20190948

Previous Articles    

Building and application of metal cutting knowledge graph

Yang DUAN(),Li HOU(),Song LENG   

  1. School of Mechanical Engineering,Sichuan University,Chengdu 610065,China
  • Received:2019-10-12 Online:2021-01-01 Published:2021-01-20
  • Contact: Li HOU E-mail:duan_yang71@126.com;houli4@163.com

Abstract:

To solve the problem that manufacturing enterprises generally can't make full use of the data resources of metal cutting scattered in various application systems, an approach of building metal cutting knowledge graph is proposed to realize cutting data integration and enhance data value density. Firstly, metal cutting knowledge is classified into factual type and procedural type. A complete ontology model is established by using OWL language and top-down method. Then, a multi-source data integration framework is constructed, and a data fusion algorithm suitable for identifying the equivalent entity of cutting data is determined as well. Finally, a visualization system of knowledge graph is developed, which has been applied to an aero-engine maintenance company in China. The research results of this paper provide strong support for the construction of data-driven based and intelligent metal cutting.

Key words: metal cutting, knowledge graph, intelligent manufacturing, data fusion

CLC Number: 

  • TH166

Table 1

OWL vocabulary and examples"

主要词汇举例
rdfs:subClassOf切断刀片?刀片
rdfs:sameClassAs数控设备≡数控车∪数控铣∪数控磨
rdfs:subPropertyOf用外圆刀片?用刀具
rdfs:domain?有加工.T?工件
rdfs:rangeT??有加工.加工
owl:disjointWith工件??刀具
owl:inverseOf生产刀具≡供应商是
owl:symmetricProperty相似度
owl:hasValue切断刀片≡刀具类型编码 value "002"

Fig.1

Knowledge type of metal cutting"

Fig.2

Ontology model of factual knowledge"

Table 2

Triple examples"

SubjectPredicateObject
前角发生变化_change1
_change1变化结果是增大
_change1导致变化剪切角
_change1导致结果是增大

Fig.3

Tool classes, feature classes and data properties"

Fig.4

Machine ontology classes"

Fig.5

Ontology model of cutting process"

Fig.6

Complete ontology model of metal cutting"

Fig.7

Architecture of data integration"

Table 3

Partial data of an oracle view"

idEquipmenttypeCompidwork_type_name
1MAZAK510KZ?D5.6MY异形
2HEM1000MZL?D3.25L10R0Z3实心材料钻孔
????

Table 4

Examples of mapping axiom"

映射公理示例
mappingIdM:工序
source:工序?{id} a :工序 .
targetselect id from v_tool_dc
mappingIdOP:加工结构
source:工序?{id} :加工结构 :{work_type_name}.
target

select id,work_type_name from v_tool_dc

where work_type_name is not null

mappingIdOP:在机床
source:工序?{id} :在机床 :{equipmenttype} .
targetselect id,equipmenttype from v_tool_dc
mappingIdOP:用刀具
source:工序?{id} :用刀具 :刀具?{compid} .
targetselect id,compid from v_tool_dc

Table 5

Triple examples of metal cutting"

SubjectPredicateObject
<http://scu.edu.cn/tooling#工序-1>rdf:type<http://scu.edu.cn/tooling#工序>
<http://scu.edu.cn/tooling#工序-1><http://scu.edu.cn/tooling#加工结构><http://scu.edu.cn/tooling#异形>
<http://scu.edu.cn/tooling#工序-1><http://scu.edu.cn/tooling#在机床><http://scu.edu.cn/tooling# MAZAK510>
<http://scu.edu.cn/tooling#工序-1><http://scu.edu.cn/tooling#用刀具><http://scu.edu.cn/tooling# KZ-D5.6MY >

Table 6

Examples of similarity computation"

OracleSQL Server

Jaccard

相似度

Levenshtein

相似度

数车数控车0.660.8
车工普车0.330.5
数控外磨圆数控外圆磨10.8
车铣车铣中心0.50.66
三通管衬套管0.20.33
吊挂支架悬臂支架0.3330.5

Fig.8

Mapping rule"

Fig.9

Architecture of visualization system"

Table 7

Main modules and functions"

MVC模块名功能说明
ControllerSearchController通用查询控制器
GraphController图查询数据控制器,建立刀具?工件?机床?工序之间的关系
ExperimentController试验数据控制器,获取某试验相关的数据
ModelToolC#刀具类,对应Neo4j中的刀具信息
ToolParameterC#刀具参数类,对应Neo4j中的刀具参数
WorkpieceC#工件类,对应Neo4j中的工件信息
MachineC#机床类,对应Neo4j中的机床信息
ProcessC#工序类,对应Neo4j中的工序信息
ViewIndex.cshtml基于jquery和d3.js绘制关系图

Fig.10

Visualization of metal cutting knowledge graph"

1 刘战强, 黄传真, 万熠, 等. 切削数据库的研究现状与发展[J]. 计算机集成制造系统, 2003, 9(11): 937-943.
Liu Zhan-qiang, Huang Chuan-zhen, Wan Yi, et al. Research state and development directions of cutting database[J]. Computer Integrated Manufacturing Systems, 2003, 9(11): 937-943.
2 Walter GPS.[EB/OL]. [2019-10-08]..
3 ToolLibrary CoroPlus.[EB/OL]. [2019-10-08]..
4 谭方浩. 基于特征的智能型车削数据库系统研究与开发[D]. 北京: 北京理工大学机械与车辆学院, 2015.
Tan Fang-hao. Research and development of intelligent turning database system based on machining features[D]. Beijing: School of Machinery and Vehicle, Beijing University of Technology, 2015.
5 任莹晖, 纪会敏, 杜勇, 等. 切削刀具综合管理系统的数据采集和存储设计研究[J].计算机应用研究, 2016, 33(10): 3031-3035.
Ren Ying-hui,Ji Hui-min,Du Yong,et al. Study on design of data acquisition and storage for comprehensive tool management system[J]. Application Research of Computers, 2016, 33(10): 3031-3035.
6 海源, 张松, 李剑峰, 等. 基于射频识别技术的车间级刀具管理系统[J]. 计算机集成制造系统, 2016, 22(8): 1907-1918.
Hai Yuan, Zhang Song, Li Jian-feng, et al. Workshop-level tool management system based on radio frequency identification technology[J]. Computer Integrated Manufacturing Systems, 2016, 22(8): 1907-1918.
7 廖生辉, 王建军, 卓勇, 等. 在线智能刀具管理系统的开发与研究[J]. 锻压技术, 2018, 43(9): 189-195.
Liao Sheng-hui,Wang Jian-jun,Zhuo Yong, et al. Development and research on online intelligent tool management system[J]. Forging & Stamping Technology, 2018, 43(9): 189-195.
8 白雪, 鄢萍. 齿轮加工数字化车间刀夹具管理系统的设计[J]. 计算机集成制造系统, 2020, 26(5): 1233-1245.
Bai Xue, Yan Ping. Design of cutting tools and fixtures management system for digital workshop of gear machining[J]. Computer Integrated Manufacturing Systems, 2020, 26(5): 1233-1245.
9 Peng C, Du H, Warren Liao T. A research on the cutting database system based on machining features and TOPSIS[J]. Robotics and Computer-Integrated Manufacturing, 2017, 43: 96-104.
10 张丹丹. 基于特征的航空结构件工艺知识库建立和数据挖掘研究[D]. 山东:山东大学机械工程学院, 2018.
Zhang Dan-dan. Feature-based knowledge base building and data mining for aeronautical structural parts[D]. Shandong: School of Mechanical Engineering, Shandong University, 2018.
11 Zhang Y Z, Luo X F, Zhang H. A knowledge representation for unit manufacturing processes[J]. International Journal of Advanced Manufacturing Technology, 2014, 73: 1011-1031.
12 王晶, 张定华, 吴宝海, 等. 基于临界约束的四轴数控加工刀轴优化方法[J]. 机械工程学报, 2012, 48(17): 114-120.
Wang Jing, Zhang Ding-hua, Wu Bao-hai, et al. Tool orientation optimization method in four-axis CNC machining based on critical constraints[J]. Journal of Mechanical Engineering, 2012, 48(17): 114-120.
13 吴宝海, 梁满仓, 张莹, 等. 复杂曲面通道多轴加工的刀具选择方法[J]. 机械工程学报, 2018, 54(3): 117-124.
Wu Bao-hai, Liang Man-cang, Zhang Ying, et al. Tool selection of multi-axis machining for channel parts with sculptured surface[J]. Journal of Mechanical Engineering, 2018, 54(3): 117-124.
14 陈行政, 李聪波, 吴磊, 等. 面向能耗的多刀具孔加工刀具直径及工艺参数集成优化模型[J]. 机械工程学报, 2018, 54(15): 221-231.
Chen Xing-zheng, Li Cong-bo, Wu Lei, et al. Integrating optimization of cutter diameter and cutting parameters for energy-aware multi-tool hole machining[J]. Journal of Mechanical Engineering, 2018, 54(15): 221-231.
15 An Q, Chen J, Tao Z, et al. Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti-6242S and Ti-555 titanium alloys[J]. International Journal of Refractory Metals and Hard Materials, 2020, 86: 105091.
16 Sun J, Huang S, Ding H, et al. Cutting performance and wear mechanism of Sialon ceramic tools in highspeed face milling GH4099[J]. Ceramics International, 2020, 46(2): 1621-1630.
17 黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6): 1-12.
Huang Heng-qi, Yu Juan, Liao Xiao, et al. Review on knowledge graphs[J]. Computer Systems & Applications, 2019, 28(6): 1-12.
18 YAGO. [EB/OL]. [2019-10-08]. .
19 GeoNames.[EB/OL]. [2019-10-08]. .
20 中国中医科学院中医药信息研究所. 中医药知识图谱[EB/OL]. [2019-10-08]. .
21 Calvanese D, Cogrel B, Komla-Ebri S, et al. Ontop: answering SPARQL queries over relational databases[J]. Semantic Web, 2016, 8(3): 471-487.
22 Barrasa Jesús.[EB/OL]. [2019-10-08]. .
[1] Dan-tong OUYANG,Cong MA,Jing-pei LEI,Sha-sha FENG. Knowledge graph embedding with adaptive sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 685-691.
[2] Lei CHEN,Jiang⁃feng WANG,Yuan⁃li GU,Xue⁃dong YAN. Multi⁃source traffic data fusion algorithm based onmind evolutionary algorithm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 705-713.
[3] YANG Zhao-sheng, MO Xiang-lun, YU Yao, ZHANG Biao. Estimation of travel time under abnormal state [J]. 吉林大学学报(工学版), 2013, 43(06): 1459-1464.
[4] YANG Xiao-jun, SONG Qing-song, MA Xiang, LI Dong-hai. Fault-tolerance target tracking based on multi-model information filtering [J]. 吉林大学学报(工学版), 2013, 43(05): 1381-1385.
[5] ZHOU Jing, GAO Yin-han, CHEN Xiao-lin, LIU Chang-ying, LIU Jing. Networked data fusion based on visual measure system with single camera [J]. 吉林大学学报(工学版), 2013, 43(01): 92-97.
[6] YANG Zhao-sheng, GAO Xue-ying, SUN Di, ZHANG Mao-lei. Estimation of travel time based on SCATS /GPS data [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 137-143.
[7] JIAO Zhu-Jing, XIONG Wei-Li, XU Bao-Guo. Dissimilarsensor data fusion based on weighted least square [J]. 吉林大学学报(工学版), 2010, 40(03): 816-0820.
[8] YANG Chi-Fu, ZHENG Chu-Chao, JIANG Hong-Zhou, HAN Dun-Wei. Construction of navigation database for the systems of flight simulator prototype [J]. 吉林大学学报(工学版), 2010, 40(03): 863-0867.
[9] ZHAO Yi-bing,WANG Rong-ben,LI Lin-hui,Guo Lie .

Obstacle identification based on dempstershafer theory of evidence

[J]. 吉林大学学报(工学版), 2008, 38(06): 1295-1299.
[10] Yang Zhao-sheng;Wang Wei;Dong Sheng;Zhu Wei-quan;Shen Jian-hui . nformation fusion technology of GPS/DR integrated positioning system [J]. 吉林大学学报(工学版), 2008, 38(03): 508-0513.
[11] Yang Zhao-sheng,Feng Jin-qiao,Zhang Lin . Kalman filtering based traffic information fusion method [J]. 吉林大学学报(工学版), 2007, 37(05): 1039-1042.
[12] Feng Zhi-gang, Wang Qi . Health evaluation of liquid hydrogen providing system based
on fuzzy data fusion method
[J]. 吉林大学学报(工学版), 2006, 36(05): 751-0756.
[13] ZHOU Jie-min, HAN Jing, XIAO Ji-li . Fusion Algorithm of Target Identification [J]. 吉林大学学报(工学版), 2001, (4): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!