Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (4): 959-969.doi: 10.13229/j.cnki.jdxbgxb20200889
Yi-na ZHOU1,2(),Hong-li DONG1,2,3,Yong ZHANG4,Jing-yi LU1,2,3()
CLC Number:
1 | Pan S S, Xu Z D, Li D S, et al. Research on detection and location of fluid-filled pipeline leakage based on acoustic emission technology[J]. Sensors, 2018, 18(11): No. 3628. |
2 | Zhu J X, Ren L, Ho S C, et al. Gas pipeline leakage detection based on PZT sensors[J]. Smart Materials and Structures, 2017, 26(2): No. 025022. |
3 | 刘翠伟,敬华飞,方丽萍,等. 输气管道泄漏声波衰减模型的理论研究[J]. 振动与冲击, 2018, 37(20): 109-114. |
Liu Cui-wei, Jing Hua-fei, Fang Li-ping, et al. A theoretical study of acoustic attenuation model of gas pipeline leakage [J]. Vibration and Shock, 2018, 37(20): 109-114. | |
4 | 曹雪伟,孙首群,宣立明,等. 小波分析在管道泄漏信号去噪中的优化研究[J]. 石油化工自动化, 2019, 55(1): 29-34. |
Cao Xue-wei, Sun Shou-qun, Xuan Li-ming, et al. Optimization of wavelet analysis in denoising of pipeline leakage signals[J]. Petrochemical Automation, 2019, 55(1): 29-34. | |
5 | Yu X C, Liang W, Zhang L B, et al. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in lead detection for natural gas pipeline[J]. Mechanical Systems and Signal Processing, 2016, 72: 266-285. |
6 | 赵利强,王建林,于涛. 基于改进EMD的输油管道泄漏信号特征提取方法研究[J]. 仪器仪表学报, 2013, 34(12): 2696-2702. |
Zhao Li-qiang, Wang Jian-lin, Yu Tao. Study on feature extraction method of oil pipeline leakage signal based on improved EMD[J]. Chinese Journal of Scientific Instrument, 2013, 34(12): 2696-2702. | |
7 | Liang X M, Li P, Hu Z Y, et al. Leak detection and location of pipelines based on LMD and least squares twin support vector machine[J]. IEEE Access, 2017,5: 8659-8668. |
8 | 周颖涛,周绍骑,姚远航,等. 基于EEMD的声发射管道泄漏定位检测[J]. 四川兵工学报, 2015, 36(3): 110-113, 116. |
Zhou Ying-tao, Zhou Shao-qi, Yao Yuan-hang, et al. Leakage location detection of acoustic emission pipeline based on EEMD[J]. Sichuan Journal of military Industry, 2015, 36(3): 110-113, 116. | |
9 | 周怡娜,路敬祎,董宏丽,等. 云相似度测量的变分模态分解去噪方法[J]. 吉林大学学报: 信息科学版, 2020, 38(1): 9-17. |
Zhou Yi-na, Lu Jing-yi, Dong Hong-li, et al. The denoising method of variational mode decomposition based on cloud similarity measurement[J]. Journal of Jilin University (Information Science Edition), 2020, 38(1): 9-17. | |
10 | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical and Engineering ences, 1998, 454(1971): 903-995. |
11 | 李余兴,李亚安,陈晓,等. 基于VMD和中心频率的舰船辐射噪声特征提取方法研究[J]. 振动与冲击, 2018, 37(23): 213-218, 285. |
Li Yu-xing, Li Ya-an, Chen Xiao, et al. Research on the extraction method of ship radiation noise based on VMD and central frequency[J]. Vibration and Impact, 2018, 37(23): 213-218, 285. | |
12 | 吴文轩,王志坚,张纪平,等. 基于峭度的VMD分解中K值的确定方法研究[J]. 机械传动, 2018, 42(8): 153-157. |
Wu Wen-xuan, Wang Zhi-jian, Zhang Ji-ping, et al. Research on the method of determining K value in VMD decomposition based on kurtosis[J]. Mechanical Transmission, 2018, 42(8): 153-157. | |
13 | Yang H B, Liu S L, Zhang H L. Adaptive estimation of VMD modes number based on cross correlation coefficient[J]. Journal of Vibroengineering, 2017, 19(2): 1185-1196. |
14 | 昝涛,庞兆亮,王民,等. 基于VMD的滚动轴承早期故障诊断方法[J]. 北京工业大学学报, 2019, 45(2): 103-110. |
Zan Tao, Pang Zhao-liang, Wang Min, et al. Early fault diagnosis method of rolling bearings based on VMD[J]. Journal of Beijing University of Technology, 2019, 45(2): 103-110. | |
15 | Li Y, Li Y, Chen X,et al. Research on ship- radiated noise denoising using secondary variational mode decomposition and correlation coefficient[J]. Sensors, 2017, 18(1): No. 18010048. |
16 | 周怡娜,路敬祎,张勇,等. VMD-SG-WT去噪法及其在混沌去噪中的应用[J]. 东北石油大学学报, 2020, 44(4): 113-120, 132. |
Zhou Yi-na, Lu Jing-yi, Zhang Yong, et al. VMD-SG-WT denoising method and its application in chaotic denoising[J]. Journal of Northeast Petroleum University, 2020, 44(4): 113-120, 132. | |
17 | Zhang X, Miao Q, Zhang H, et al. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108: 58-72. |
18 | 周洋,向阳,黄陈哲,等. 基于VMD⁃SVD能量标准谱⁃Teager能量算子的轴承故障诊断方法[J]. 噪声与振动控制, 2019, 39(4): 212-217, 253. |
Zhou Yang, Xiang Yang, Huang Chen-zhe, et al. The fault diagnosis method for bearing Based on VMD-SVD energy standard spectrum-Teager energy operator[J]. Noise and Vibration Control, 2019, 39(4): 212-217, 253. | |
19 | 任学平,李攀,王朝阁,等. 基于改进VMD与包络导数能量算子的滚动轴承早期故障诊断[J]. 振动与冲击, 2018, 37(15): 6-13. |
Ren Xue-ping, Li Pan, Wang Chao-ge, et al. Early fault diagnosis of rolling bearing based on improved VMD and envelope derivative energy operator[J]. Vibration and Shock, 2018, 37(15): 6-13. | |
20 | 王秀芳,檀丽丽,姜春雷,等. 基于互信息的VMD算法在管道泄漏检测中的应用[J]. 压力容器, 2017, 34(8): 75-80. |
Wang Xiu-fang, Tan Li-li, Jiang Chun-lei, et al. The application of VMD algorithm based on mutual information in pipeline leakage detection[J]. Pressure vessel, 2017, 34(8): 75-80. | |
21 | Chang L, Cao H, Shen C. Dual-Mass MEMS Gyroscope parallel denoising and temperature compensation processing based on WLMP and CS-SVR[J]. Micromachines, 2020, 11(6): 586. |
22 | 李帅永,夏传强,程振华,等. 基于VMD和互谱分析的供水管道泄漏定位方法[J]. 仪器仪表学报, 2019, 40(7): 195-205. |
Li Shui-yong, Xia Chuan-qiang, Cheng Zhen-hua, et al. Water supply pipeline leakage location method Based on VMD and mutual spectrum analysis[J]. Journal of Instrumentation, 2019, 40(7): 195-205. | |
23 | Ma W P, Yin S X, Jiang C L, et al. Variational mode decomposition denoising combined with the Hausdorff distance[J]. Review of Entific Instruments, 2017, 88(3): No. 035109. |
24 | Yang J, Wang X, Feng Z, et al. Research on pattern recognition method of blockage signal in pipeline based on LMD information entropy and ELM[J]. Mathematical Problems in Engineering Theory Methods & Applications, 2017(3): 1-16. |
25 | 王秀芳,王昕. EEMD近似熵和支持向量机的管道泄漏特征向量提取研究[J]. 化工自动化及仪表, 2015, 42(11): 1226-1229. |
Wang Xiu-fang, Wang Xin. Study on EEMD approximate entropy and SVM pipeline leak feature extraction[J]. Control and Instruments in Chemical Industry, 2015, 42(11): 1226-1229. | |
26 | 冯雪松,文玉梅,甄锦鹏,等. 管道泄漏声振动信号的特征分析[J]. 声学技术, 2015, 34(5): 413-418. |
Feng Xue-song, Wen Yu-mei, Zhen Jin-peng, et al. Characteristic analysis of acoustic vibration signals of pipeline leakage[J]. Acoustic Technology, 2015, 34(5): 413-418. | |
27 | 刘炜,刘宏昭. 应用模糊熵和相似度的管道泄漏检测与定位[J]. 机械科学与技术, 2016, 35(3): 437-443. |
Liu Wei, Liu Hong-zhao. Application of fuzzy entropy and similarity in pipeline leakage detection and location [J]. Mechanical Science and Technology, 2016, 35(3): 437-443. | |
28 | 袁培龙,周绍骑,周颖涛,等. 基于内禀模态奇异值熵的声发射管道泄漏诊断[J]. 重庆理工大学学报, 2016, 30(11): 60-64. |
Yuan Pei-long, Zhou Shao-qi, Zhou Ying-tao, et al. Diagnosis of acoustic emission pipeline leakage based on intrinsic mode singular value entropy[J]. Journal of Chongqing University of Technology, 2016, 30(11): 60-64. | |
29 | 孙洁娣,肖启阳,温江涛,等. 基于LMD包络谱熵及SVM的天然气管道微小泄漏孔径识别[J]. 机械工程学报, 2014, 50(20): 18-25. |
Sun Jie-di, Xiao Qi-yang, Wen Jiang-tao, et al. Small leakage aperture identification of natural gas pipeline based on LMD envelope spectrum entropy and SVM[J]. Journal of Mechanical Engineering, 2014, 50(20): 18-25. | |
30 | Rostaghi M, Azami H. Dispersion entropy: a measure for time-series analysis[J]. IEEE Signal Processing Letters, 2016: 23(5): 610-614. |
31 | Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
32 | Kailath T. The divergence and bhattacharyya distance measures in signal selection[J]. IEEE Transactions on Communication Technology, 1967, 15(1): 52-60. |
33 | Lipman Y, Puente J, Daubechies I. Conformal wasserstein distance: II. computational aspects and extensions[J]. Mathematics of Computation, 2011, 82(281): 331-381. |
34 | Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. |
35 | 梁洪卫. 油气管道泄漏声波信号检测与识别技术研究[D]. 大庆:东北石油大学电气信息工程学院,2019. |
Liang Hong-wei. A study on detection and identification technology of oil and gas pipeline leakage acoustic signal [D]. Daqing: School of Electrical and Information Engineering, Northeast Petroleum University, 2019. |
[1] | Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328. |
[2] | Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279. |
[3] | Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309. |
[4] | Hong-kui XU,Tong-tong JIANG,Xin LI,Bin-xiang JIANG,Yong-lei WANG. LTE uplink interference analysis combined with denoising autoencoder and extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 195-203. |
[5] | Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194. |
[6] | Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279. |
[7] | Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844. |
[8] | Xiao-long ZHU,Zhong XIE. Automatic construction of knowledge graph based on massive text data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1358-1363. |
[9] | Tao XU,Ke MA,Cai-hua LIU. Multi object pedestrian tracking based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 27-38. |
[10] | Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18. |
[11] | GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935. |
[12] | DONG Qiang, LIU Jing-hong, ZHOU Qian-fei. Improved SURF algorithm used in image mosaic [J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652. |
[13] | YIN Ming, ZHAN Yin-wei, PEI Hai-long. Co-sparse analysis operator learning for image fusion [J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058. |
[14] | XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998. |
[15] | LIU Hong,SUN Shuang-zi,WANG Qing-yuan,LI Yan-zhong. PSO based feature extraction method for analog circuit fault information [J]. 吉林大学学报(工学版), 2015, 45(2): 675-680. |
|