Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2216-2224.doi: 10.13229/j.cnki.jdxbgxb20210416

Previous Articles    

Key technology of face recognition system based on swarm intelligence in library

Song-mei TANG()   

  1. Library,Changchun University,Changchun 130022,China
  • Received:2021-05-18 Online:2021-11-01 Published:2021-11-15

Abstract:

In order to facilitate the transformation of libraries to new forms of smart libraries, face recognition plays a very important role in it. Image segmentation, on the other hand, is one of the most fundamental studies in face recognition. In this study, we first propose a hybrid successive ant colony optimization algorithm (BACO), and further propose a BACO-based multi-threshold image segmentation model for facial image segmentation. In order to verify the performance of the BACO-based multi-threshold image segmentation model, it is compared with nine other similar methods for experiments. For the obtained experimental results, the segmentation results were first evaluated using PSNR and FSIM, and the evaluation was further analyzed using Wilcoxon signed-rank test. The obtained results clearly confirm that the BACO-based multi-threshold image segmentation model obtains the optimal performance. Thus, the proposed multi-threshold image segmentation model lays a solid foundation for the next step of facial recognition and even smart library construction.

Key words: smart library, image segmentation, swarm intelligence optimization, face recognition

CLC Number: 

  • TP391

Fig.1

File bag with k solutions"

Fig.2

Two-dimensional histogram and corresponding plan"

Fig.3

Images for segmentation"

Table 1

Definition and description of two evaluation indicators"

名称峰值信噪比(PSNR)特征相似度指数(FSIM)
公式PSNR=20?log10?255RMSEFSIM=IΩSLXPCmXIΩPCmX
描述评估分割后的图像与原始图像之间的差异。定义质量分数,它反映了一个地方结构的重要性。

Table 2

Results of Wilcoxon signed rank-test for PSNR evaluation"

阈值水平~BACOSMAACORWOACSABCSCAMVOHHO
+/-/=~1/1/20/0/41/0/33/0/13/0/12/0/21/0/32/1/1
3排序均值23.7536.57.256.25736.25
排名142795825
+/-/=~1/0/30/0/43/0/12/0/22/0/24/0/01/0/32/0/2
4排序均值253.2565.548.537.75
排名153764928
+/-/=~1/0/30/0/42/0/22/0/23/0/14/0/01/0/33/0/1
5排序均值2.254.5374.753.758.7538
排名152764928
+/-/=~2/0/20/0/41/0/33/0/10/0/44/0/03/0/14/0/0
13排序均值242.255.255.252.7596.58
排名142553978
+/-/=~3/0/10/0/43/0/13/0/12/0/24/0/04/0/04/0/0
14排序均值1.254.252.554.753.5977.75
排名142653978
+/-/=~1/0/30/0/42/0/22/0/20/0/44/0/02/0/24/0/0
15排序均值1.753.253.254.55.53.2596.58
排名122562978

Table 3

Results of Wilcoxon signed rank-test for FSIM evaluation"

阈值水平~BACOSMAACORWOACSABCSCAMVOHHO
+/-/=~1/0/30/0/42/0/22/0/22/0/24/0/01/0/32/0/2
3排序均值1.7533675.2593.256.75
排名122685947
+/-/=~1/0/30/0/43/0/13/0/12/0/24/0/02/0/22/0/2
4排序均值15.252.57.55.754.7593.55.75
排名152864936
+/-/=~1/1/20/0/43/0/13/0/12/0/24/0/01/0/32/0/2
5排序均值2.532.756.574.7593.256.25
排名132785946
+/-/=~1/0/31/0/32/0/22/0/21/0/34/0/04/0/04/0/0
13排序均值1.254.252.55.255.752.7596.57.75
排名142563978
+/-/=~3/0/10/0/42/0/23/0/12/0/24/0/04/0/04/0/0
14排序均值1.54.252.25553.25977.75
排名142553978
+/-/=~2/0/20/0/43/0/14/0/01/0/34/0/04/0/04/0/0
15排序均值1.753.253.254.55.53.2596.58
排名122562978

Fig.4

Gray segmentation results and color mapping results of Figure 3 (b) obtained by each method at the threshold level of 15"

1 胡静,陶洋.基于RPCA的群稀疏表示人脸识别方法[J].重庆邮电大学学报:自然科学版,2020,32(3):459-468.
Hu Jing, Tao Yang. Group sparse representation face recognition method based on RPCA[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020,32(3):459-468.
2 Zhang Z C, Yin J Q. Bee foraging algorithm based multi-level thresholding for image segmentation[J].Ieee Access, 2020, 8: 16269-16280.
3 Abd Elaziz M. An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real world example of COVID-19 CT image segmentation[J]. IEEE Access, 2020,8: 125306-125330.
4 Yue X F, Zhang H B. Improved hybrid bat algorithm with invasive weed and its application in image segmentation[J]. Arabian Journal for Science and Engineering, 2019,44(11):9221-9234.
5 Chakraborty S.Modified cuckoo search algorithm in microscopic image segmentation of hippocampus[J]. Microscopy Research and Technique, 2017, 80(10):1051-1072.
6 Di S. Image superpixel segmentation based on hierarchical multi-level LI-SLIC[J]. Optics & Laser Technology, 2021,135:106703.
7 Yue X, Zhang H. Modified hybrid bat algorithm with genetic crossover operation and smart inertia weight for multilevel image segmentation[J]. Applied Soft Computing, 2020, 90: 106157.
8 Xing Z. An improved emperor penguin optimization based multilevel thresholding for color image segmentation[J]. Knowledge-Based Systems, 2020, 194: 105570.
9 Wu B. An ameliorated teaching——learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur's entropy and Otsu's between class variance[J]. Information Sciences, 2020, 533: 72-107.
10 Upadhyay P, Chhabra J K. Kapur's entropy based optimal multilevel image segmentation using crow search algorithm[J]. Applied Soft Computing, 2020,97: 105522.
11 Srikanth R, Bikshalu K. Multilevel thresholding image segmentation based on energy curve with harmony search algorithm[J]. Ain Shams Engineering Journal, 2021,12(1):1-20.
12 Dorigo M, Birattari M, Stutzle T. Ant colony optimization[J]. IEEE computational intelligence magazine, 2006, 1(4): 28-39.
13 Socha K, Dorigo M. Ant colony optimization for continuous domains[J]. European Journal of Operational Research, 2008, 185(3): 1155-1173.
14 Arbeláez P. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916.
15 Zhang L. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011,20(8): 2378-2386.
16 García S.Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power[J]. Information Sciences, 2010, 180(10): 2044-2064.
17 Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied mathematics and computation, 2009, 214(1): 108-132.
18 杨梦,雷博,赵强,等.基于改进粒子群的二维模糊散度多阈值图像分割[J].计算机应用与软件,2020,37(9):133-138.
Yang Meng, Lei Bo, Zhao Qiang, et al. Two-dimensional fuzzy divergence multi-thresholdimage segmentation based on improved pso[J]. Computer Applications and Software, 2020,37(9):133-138.
19 Li S, Chen H, Wang M, et al. Slime mould algorithm: A new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323.
20 Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
21 Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-based Systems, 2016, 96:120-133.
22 Mirjalili S, Mirjalili S M, Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural Computing & Applications, 2016, 27(2): 495-513.
23 Heidari A A.Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97:849-872.
24 Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44: 800-801.
25 朱良宽,刘亮,东旭,等. 基于改进三维Otsu法的森林冠层图像分割[J]. 计算机工程, 2019, 45(1): 253-258, 263.
Zhu Liang-kuan, Liu Liang,Dong Xu,et al. Forest Canopy image segmentation based on improved 3D Otsu method[J]. Computer Engineering, 2019, 45(1): 253-258, 263.
26 施新岚,黄俊,黄洋,等.基于Gabor纹理增强的人脸活体检测算法[J].重庆邮电大学学报:自然科学版,2020,32(6):1023-1030.
Shi Xin-lan, Huang Jun, Huang Yang, et al. Face liveness detection using Gabor texture enhancement[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020,32(6):1023-1030.
27 董本志,陈迪,景维鹏. 基于对称性区域过滤的显著性区域检测方法[J]. 计算机工程, 2019, 45(5): 216-221.
Dong Ben-zhi,Chen Di,Jing Wei-peng. Salient region detection method based on symmetric region filtering[J]. Computer Engineering, 2019, 45(5): 216-221.
[1] Sheng-sheng WANG,Jing-yu CHEN,Yi-nan LU. COVID⁃19 chest CT image segmentation based on federated learning and blockchain [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2164-2173.
[2] Lu-shen WU,Wei CHENG,Yun HU. Image segmentation of multilevel threshold based on improved cuckoo search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 358-369.
[3] Feng-li GAO,Min TAO,Xue-yan LI,Xin HE,Fan YANG,Zhuo WANG,Jun-feng SONG,Dan TONG. Accurate segmentation of stroke in CT image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 678-684.
[4] You ZHOU,Sen YANG,Da-lin LI,Chun-guo WU,Yan WANG,Kang-ping WANG. Acceleration platform for face detection and recognition based on field⁃programmable gate array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2051-2057.
[5] Jun-jun LI,Jian-nong CAO,Bei-bei CHENG,Juan LIAO,Ying-ying ZHU. High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi⁃scaleobjects using spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2098-2108.
[6] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[7] XIAO Ming-yao, LI Xiong-fei, ZHANG Xiao-li, ZHANG Liu. Medical image segmentation algorithm based on multi-scale region growing [J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[8] LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[9] ZHAO Fu-qun, ZHOU Ming-quan, GENG Guo-hua. Image threshold segmentation with GA-Otsu method and quantitative identification [J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[10] XIAO Ming-yao, LI Xiong-fei. Multi-scale 3D Otsu thresholding algorithm based on Gaussian decomposition [J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[11] WANG Pei-zhi, TIAN Di, LONG Tao, LI Di-fei, QIU Chun-ling, LIU Dun-yi. Automatic focusing algorithm for TOF-SIMS zircon sample image [J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[12] NIE Hai-tao, LONG Ke-hui, MA Jun, ZHANG Lei, MA Xi-qiang. Face recognition based on fast scale invariant feature transform algorithm and fuzzy control [J]. 吉林大学学报(工学版), 2016, 46(2): 549-555.
[13] SHEN Xuan-jing, ZHANG He, CHEN Hai-peng, WANG Yu. Fast recursive multi-thresholding algorithm [J]. 吉林大学学报(工学版), 2016, 46(2): 528-534.
[14] ZHENG Xin, PENG Zhen-ming, XING Yan. Novel method of evaluating image segmentation algorithms based on activity degree [J]. 吉林大学学报(工学版), 2016, 46(1): 311-317.
[15] LI Yi-bing, YANG Peng, YE Fang, LIU Dan-dan. Texture image segmentation using hierarchical MRF model based on the interactive potential function and mean-field parameter estimation [J]. 吉林大学学报(工学版), 2015, 45(6): 2075-2079.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!