Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 2051-2057.doi: 10.13229/j.cnki.jdxbgxb20180480

Previous Articles     Next Articles

Acceleration platform for face detection and recognition based on field⁃programmable gate array

You ZHOU1,2(),Sen YANG1,2,Da-lin LI1,2,Chun-guo WU1,2,Yan WANG1,2,Kang-ping WANG1,2()   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
    2. Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2018-05-15 Online:2019-11-01 Published:2019-11-08
  • Contact: Kang-ping WANG E-mail:zyou@jlu.edu.cn;wangkp@jlu.edu.cn

Abstract:

A heterogeneous computing technique based on Field-Programmable Gate Array (FPGA) is proposed in this paper. The Viola-Jones face detection algorithm is accelerated based on concurrent and pipelining methods to improve data throughput and increase the parallelism of cascaded classifiers and convolution neural network is accelerated by concurrent convolution and pipelined feature maps. The experimental results show that the hardware platform achieves a speedup of 2.9 times compared with the software platform.

Key words: computer application, face detection, face recognition, convolution neural network, field programmable gate array(FPGA) algorithm, algorithm hardware

CLC Number: 

  • TP338

Fig.1

Haar feature map"

Fig.2

Original image and integral image"

Fig.3

Schematic diagram of cascade classifier"

Fig.4

Schematic diagram of convolutionalneural network"

Fig.5

Schematic diagram of integral imageacceleration"

Fig.6

Throughput capacity of each STAGE incascade classifier"

Fig.7

Schematic diagram of cascade classifieracceleration"

Fig.8

Convolution calculation procedure"

Fig.9

Schematic diagram of accelerating platform diagram"

Fig.10

Detection recognition results"

Table 1

Hardware resource list"

硬件名称 硬件型号
PC主机CPU型号 Inter(R) CPU i5 2310,2.9 GHz,4核
PC主机内存 8 GB
PC主机操作系统 Ubuntu16.04 64位
GPU GEFORCE GTX 1060
FPGA型号 XILINX KCU105

Table 2

Software resource list"

软件名称 软件版本
Opencv V3.4
Vivado HLS V16.04
Vivado V16.04
Keras V2.4

Table 3

Face recognition module network structure"

层名称 输入/出尺寸 参数量
input(Input) (None, 28, 28, 1) 0
conv2d_1(Conv2D) (None, 26, 26, 8) 80
conv2d_2(Conv2D) (None, 24, 24, 16) 1 168
Norm(Norm) (None, 24, 24, 16) 0
mp2d_1(MP2d) (None, 12, 12, 16) 0
conv2d_3(Conv2D) (None, 10, 10, 16) 2 320
Dropout_1(Dropout) (None, 10, 10, 16) 0
flatten_1(Flatten) (None, 1600) 0
dense_1(Dense) (None,32) 51 232
dropout_2(Dropout) (None,32) 0
dense_2 (Dense) (None,10) 330

Table 4

FPGA resource usage"

逻辑资源 使用资源 总资源 使用率/%
LUT 195 044 242 400 76.39
REGISTER 352 370 484 800 64.43
DSP 376 1 920 14.95
BRAM 556 600 89.17

Table 5

Comparison of hardware andsoftware platforms"

人脸数 CPU平台 CPU+FPGA平台 加速比/倍
t/ms f 0/(帧·s-1) t/ms f 0/(帧·s-1)
1 125.62 7.96 43.08 23.81 2.991
2 129.19 7.74 44.07 22.69 2.931
4 136.79 7.31 45.55 21.95 3.002
8 142.24 7.03 48.01 20.83 2.963

Fig.11

Comparison of time and frame number ofhardware and software platform"

1 Viola P , Jones M J . Rapid object detection using a boosted cascade of simple features[C]∥IEEE Computer Society Conference on Computer Vision & Pattern Recognition, Kauai, USA, 2001:511-518.
2 Zhao W , Chellappa R , Phillips P J , et al . Face recognition: a literature survey[J]. ACM Computing Surveys,2003,35(4):399-458.
3 Tanaka Y , Maejima H . Loop optimization method for recurrences on a processor with instruction level parallelism[J]. IPSJ Journal, 1996, 37:1657-1665.
4 Brodtkorb A R , Hagen T R . A comparison of three commodity-level parallel architectures: multi-core CPU, Cell BE and GPU[J]. LNCS,2010, 5862:70-80.
5 Matell M S , Bateson M , Meck W H , et al . Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions[J]. Psychopharmacology,2006,188(2):201-212.
6 Che S , Li J , Sheaffer J W , et al . Accelerating compute-intensive applications with GPUs and FPGAs[C]∥2008 Symposium on Application Specific Processors, Anaheim, USA, 2008: 101-107.
7 Zhou Yu-teng , Wang Wei , Huang Xin-ming . FPGA design for PCANet deep learning network[C]∥2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines, Vancouver, Canada,2015:15305335.
8 Jin S , Cho J , Pham X D , et al . FPGA design and implementation of a real-time stereo vision system[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2010,20(1):15-26.
9 Neshatpour K , Malik M , Ghodrat M A , et al . Accelerating big data analytics using fpgas[C]∥2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines, Vancouver, Canada, 2015:15305376.
10 Srivastava N , Dai S , Manohar R , et al . Accelerating face detection on programmable SoC using C-based synthesis[C]∥ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, California, USA, 2017:195-200.
11 Zhou Yong-mei , Jiang Jing-fei . An FPGA-based accelerator implementation for deep convolutional neural networks[C]∥International Conference on Computer Science and Network Technology, Harbin, China,2016:829-832.
12 Zhang Chen , Li Peng , Sun Guang-yu , et al . Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]∥Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, California, USA, 2015:161-170.
13 隋延林,何斌,张立国,等 . 基于FPGA的超高速CameraLink图像传输[J]. 吉林大学学报:工学版,2017,47(5):1634-1643.
13 Yan-lin Sui , He Bin , Zhang Li-guo , et al . Ultra-high speed CameraLink image transmission based on FPGA[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(5):1634-1643.
14 陈大伟, 刘海龙, 李金屏 . 复杂静态背景下多移动目标实时检测系统的FPGA实现[J]. 吉林大学学报:工学版,2013,43(增刊1):287-290.
14 Chen Da-wei , Liu Hai-long , Li Jin-ping . FPGA implementation of real-time detection system of moving objects in complicated static background[J]. Journal of Jilin University (Engineering and Technology Edition), 2013,43(Sup.1):287-290.
[1] Hong-wei ZHAO,Peng WANG,Li-li FAN,Huang-shui HU,Ping-ping LIU. Similarity retention instance retrieval method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2045-2050.
[2] Bing-hai ZHOU,Qiong WU. Balancing and optimization of robotic assemble lines withtool and space constraint [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2069-2075.
[3] Jun SHEN,Xiao ZHOU,Zu-qin JI. Implementation of service dynamic extended network and its node system model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2058-2068.
[4] Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044.
[5] Bin LI,Xu ZHOU,Fang MEI,Shuai-ning PAN. Location recommendation algorithm based on K-means and matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1653-1660.
[6] Ji-chang GUO,Jie WU,Chun-le GUO,Ming-hui ZHU. Image super-resolution reconstruction based on residual connection convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1726-1734.
[7] Yan-jun SUN,Xuan-jing SHEN,Hai-peng CHEN,Yong-zhe ZHAO. Recaptured image forensics algorithm based on local plane linear point [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1320-1328.
[8] Xiong-fei LI,Lu SONG,Xiao-li ZHANG. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319.
[9] Feng⁃wen ZHAI,Jian⁃wu DANG,Yang⁃ping WANG,Jing JIN,Wei⁃wei LUO. Extended contour⁃based fast affine invariant feature extracting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1345-1356.
[10] Yuan-ning LIU,Shuai LIU,Xiao-dong ZHU,Guang HUO,Tong DING,Kuo ZHANG,Xue JIANG,Shu-jun GUO,Qi-xian ZHANG. Iris secondary recognition based on decision particle swarm optimization and stable texture [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1329-1338.
[11] Bin LI,Guo⁃jun SHEN,Geng SUN,Ting⁃ting ZHENG. Improved chicken swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1339-1344.
[12] Nan WANG,Jin⁃bao LI,Yong LIU,Yu⁃jie ZHANG,Ying⁃li ZHONG. TPR⁃TF: time⁃aware point of interest recommendation model based on tensor factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 920-933.
[13] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[14] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[15] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[2] Li Hong-ji, He Ran, Zhang Wan-xi, Sun Guo-en, Zhang Li, Niu Yong-sheng . Preparation and properties of nanoTiO2/EVA composites [J]. 吉林大学学报(工学版), 2006, 36(05): 710 -0714 .
[3] Liu Xiao-li,Fang Jian-yong,Jiang Man,Li Zhi-ying,Liu Feng-qi . Isothermal crystallization kinetics of MPStremolite/nylon 1010 composites[J]. 吉林大学学报(工学版), 2008, 38(02): 298 -0302 .
[4] SUN Guoen, ZHANG Li, LI Hongji, ZHANG Chunling, LIANG Jicai, ZHANG Wanxi. Structure and Properties of EVA/Al2O3 Nanocomposite Materials[J]. 吉林大学学报(工学版), 2005, 35(06): 577 -0581 .
[5] Yang Yong-bai,Wang Jing-yu,Hu Xing-jun . Numerical simulation on flow field around pickup trucks[J]. 吉林大学学报(工学版), 2007, 37(06): 1236 -1241 .
[6] Hua Xiao-jie,Lin Mao-liu . SVM based large signal behavior modeling for RF power components[J]. 吉林大学学报(工学版), 2008, 38(增刊): 185 -0189 .
[7] . [J]. 吉林大学学报(工学版), 2005, 35(01): 44 -0048 .
[8] Zheng Kai,Zhao Hong-wei,Zhang Xiao-lin,Chen Peng . Assembly controller interface design of HEV based on MotorolaMPC565
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 163 -0167 .
[9] Hao Zhicheng,, Zhu Ming, Liu Wei,. Fast extracting and tracking of target in complex environment[J]. 吉林大学学报(工学版), 2006, 36(02): 259 -0263 .
[10] HAN Jian-Qun, ZHENG Ping. Fuzzy control of rotor speed in permanent magnet synchronous doublerotor/doublestator machine[J]. 吉林大学学报(工学版), 2009, 39(05): 1252 -1256 .