Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 417-424.doi: 10.13229/j.cnki.jdxbgxb20210777

Previous Articles    

Real⁃time diagnosis for misfire fault of diesel engine based on convolutional neural network

Wen-zhi GAO1(),Yan-jun WANG1,Xin-wei WANG2,Pan ZHANG1,Yong LI1,Yang DONG1   

  1. 1.State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China
    2.Weichai Power Co. ,Ltd. ,Weifang 261041,China
  • Received:2021-08-12 Online:2022-02-01 Published:2022-02-17

Abstract:

Aiming at diagnosing the misfire fault of engine, a method of misfire diagnosis based on convolutional neural network(CNN) is proposed. The real-time diagnosis system for misfire fault detection of diesel engine is constructed based on STM32 single chip microcomputer. The convolutional neural network for misfire fault diagnosis of diesel engine is written in Microcontroller Unit(MCU) based on STM32CubeMX software. In the experiment the speed signal is collected by using the timer input capture function of single chip microcomputer, and the top dead center signal works as the trigger signal for speed acquisition. The collected speed data is preprocessed and then used as the input of CNN. The test results in the diesel engine bench show that the real-time misfire diagnosis system has high diagnostic accuracy under wide range of speed and load conditions.

Key words: diesel engine, misfire diagnosis, convolutional neural network, STM32 single chip microcomputer

CLC Number: 

  • TK428

Fig.1

Speed fluctuation diagram"

Table 1

Structural parameters of CNN"

序号

神经网

络层

核尺寸核数量步长激活 函数补零输出规模
1输入层/////
2卷积层C16×2161×1ReluSAME
3池化层S13×2163×2/SAME
4卷积层C26×2321×1ReluSAME
5池化层S22×2322×2/SAME
6平铺层/////1280
7全连接层11/Relu/60
8输出层11/Softmax/7

Table 2

Engine parameters"

发动机参数数值
气缸数6
气缸的布置形式立式直列
缸径/mm102
行程/mm118
总排量/L5.8
压缩比17.5
发火顺序1-5-3-6-2-4
转速范围/(r·min-1800~2200
标定功率/kW85

Fig.2

Test result"

Fig.3

Test results of validation data"

Table 3

Test accuracy"

负载/(N·m)转速/(r·min-1准确率/%
空载100099.61
180099.77
150100099.50
140099.85
180099.77
300100099.83
180099.91

Fig.4

Diagnostic system block diagram"

Table 4

Bench test results"

负荷/(N·m)转速/(r·min-1
90015001900
空载99.29100.0099.29
75100.00100.0099.29
150100.00100.00100.00
300100.00100.00100.00
1 王银辉, 黄开胜, 林志华, 等. 发动机多缸随机失火诊断算法研究[J]. 内燃机工程, 2012, 33(1): 18-21, 26.
Wang Yin-hui, Huang Kai-sheng, Lin Zhi-hua, et al. Study of engine multi-cylinder random misfire detection[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(1): 18-21, 26.
2 郑太雄, 张瑜, 李永福. 汽车发动机失火故障诊断方法研究综述[J]. 自动化学报, 2017, 43(4): 509-527.
Zheng Tai-xiong, Zhang Yu, Li Yong-fu, Misfire fault diagnosis of automobile engine: a review[J]. Acta Automatica Sinica, 2017, 43(4): 509-527.
3 王德军, 吕志超, 王启明, 等. 基于卡尔曼转速观测器时频变换的失火故障诊断[J]. 吉林大学学报: 工学版, 2019, 49(1): 209-220.
Wang De-jun, Lv Zhi-chao,Wang Qi-ming, et al. Misfire detection based on time-frequency transform of kalman speed observer[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(1): 209-220.
4 王德军, 吕志超, 王启明, 等. 基于汽缸压力辨识的发动机失火故障诊断[J]. 吉林大学学报: 工学版, 2017, 47(1): 917-923.
Wang De-jun, Lv Zhi-chao, Wang Qi-ming, et al. Engine misfire fault diagnosis based on cylinder pressure identification[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 917-923.
5 Wu Z J, Sanjeev M N. DSP applications in engine control and onboard diagnostics: enabling greener automobiles[J]. IEEE Signal Processing Magazine, 2017, 34(2): 70-81.
6 Xia Z C, Ma X P, Wu H T, et al. Combined frequency domain analysis and fuzzy logic for engine misfire diagnosis[C]∥SAE Technical Paper, 2015-01-0207.
7 刘健康, 高文志, 张攀, 等. 基于改进段角加速度和神经网络的柴油机失火诊断研究[J]. 内燃机工程, 2019, 40(1): 79-85.
Liu Jian-kang, Gao Wen-zhi, Zhang Pan, et al. Diagnosis of misfire fault of diesel engine based on segment angular acceleration and neural network[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(1): 79-85.
8 Siegfried H, Martin K, Stefan J. Combustion torque estimation and misfire detection for calibration of combustion engines by parametric Kalman filtering[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4326-4337.
9 Gu C, Qiao X Y, Li H Y, et al. Misfire fault diagnosis method for diesel engine based on MEMD and dispersion entropy[J]. Shock and Vibration, 2021(5): 9213697.
10 李卫星, 陶建峰, 覃程锦, 等. 同步压缩小波与极限梯度提升树融合的柴油机失火故障诊断[J]. 西安交通大学学报, 2019, 53(2): 47-54.
Li Wei-xing, Tao Jian-feng, Qin Cheng-jin, et al. A diagnostic method for diesel engine misfire based on integrating of Synchro-Squeezed wavelet transform and XGBoost[J]. Journal of Xi'an Jiaotong University, 2019, 53(2): 47-54.
11 贾继德, 任刚, 梅检民, 等. 基于变分模态分解和交叉小波变换的柴油机失火故障诊断[J]. 内燃机工程,2020, 41(1): 57-63.
Jia Ji-de, Ren Gang, Mei Jian-min, et al. Fault diagnosis of diesel engine misfire based on VMD and XWT[J]. Chinese Internal Combustion Engine Engineering, 2020, 41(1): 57-63.
12 樊新海, 安钢, 张传清, 等. 基于排气噪声EMD的柴油机失火故障诊断[J]. 内燃机工程, 2010, 31(1): 78-81.
Fan Xin-hai, An Gang, Zhang Chuan-qing, et al. Misfire fault diagnosis for diesel engine based on EMD of exhaust noise[J]. Chinese Internal Combustion Engine Engineering, 2010, 31(1): 78-81.
13 Sneha S, Potala S, Mohanty A R. An improved method of detecting engine misfire by sound quality metrics of radiated sound[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2019, 233(12): 3112-3124.
14 Lu D, Dou W J. Fault diagnosis of engine misfire based on genetic optimized support vector machine[C]∥IEEE Proceedings of 2011 6th International Forum on Strategic Technology, Harbin, 2011: 250-253.
15 毕晓君, 柳长源, 卢迪. 基于PSO-RVM算法的发动机故障诊断[J]. 哈尔滨工程大学学报, 2014, 35(2): 245-249.
Bi Xiao-jun, Liu Chang-yuan, Lu Di. Engine fault diagnosis method based on PSO-RVM algorihm[J]. Journal of Harbin Engineering University, 2014, 35(2): 245-249.
16 院老虎, 连冬杉, 张亮, 等. 基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J]. 吉林大学学报: 工学版, 2021, 51(5): 1635-1641.
Yuan Lao-hu, Lian Dong-shan, Zhang Liang,et al. Fault diagnosis of key mechanical components of aircraft based on DenseNet and SVM[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
17 Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
18 Ding X X, He Q B, Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J]. IEEE Transactions on Instrumentation&Measurement, 2017, 66(8): 1926-1935.
19 Qin C J, Jin Y R, Tao J F, et al. A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detection[J]. Measurement, 2021, 180: 109548.
20 Janssens O, Slavkovikj V, Vervisch B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345.
21 张康, 陶建峰, 覃程锦, 等.随机丢弃和批标准化的深度卷积神经网络柴油机失火故障诊断[J]. 西安交通大学学报, 2019, 53(8): 159-166.
Zhang Kang, Tao Jian-feng, Qin Cheng-jin, et al. Diesel engine misfire diagnosis with deep convolutional neural network using dropout and batch normalization[J]. Journal of Xi'an Jiaotong University, 2019, 53(8): 159-166.
22 张根保, 李浩, 冉琰, 等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报: 工学版, 2020, 50(5): 1617-1626.
Zhang Gen-bao, Li Hao, Ran Yan, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626.
23 Feng J, Yao Y, Lu S X, et al. Domain knowledge-based Deep-Broad learning framework for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3454-3464.
24 张鹏, 孔峰, 王忠, 等. 车载诊断系统失火诊断策略的研究[J]. 汽车技术, 2007(9): 20-23.
Zhang Peng, Kong Feng, Wang Zhong, et al. Study on misfire diagnosis strategy of on-board diagnostic system[J]. Automobile Technology, 2007(9): 20-23.
25 陆红雨. 轻型汽油车OBD(车载诊断)型式认证试验研究[D]. 长春: 吉林大学汽车工程学院, 2007.
Lu Hong-yu. Study on OBD(on-board diagnostic) type approval test for light-duty gasoline vehicle[D]. Changchun: College of Automotive Engineering, Jilin University, 2007.
26 Wu P L, Nie X Y, Xie G. Multi-sensor signal fusion for a compound fault diagnosis method with strong generalization and noise-tolerant performance[J]. Measurement Science and Technology, 2021, 32(3): 1-16.
27 胡晓依, 荆云建, 宋志坤, 等. 基于CNN-SVM的深度卷积神经网络轴承故障识别研究[J]. 振动与冲击, 2019, 38(18): 173-178.
Hu Xiao-yi, Jing Yun-jian, Song Zhi-kun, et al. Bearing fault identification by using deep convolution neural networks based on CNN-SVM[J]. Journal of Vibration and Shock, 2019, 38(18): 173-178.
[1] Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376.
[2] Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62.
[3] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[4] De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404.
[5] Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260.
[6] Yun-feng HU,Yi-tong DING,Zhi-xin ZHAO,Bing-jing JIANG,Jin-wu GAO. Data-driven modeling and receding optimization control of diesel engine combustion process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 49-62.
[7] Zhong WANG,You LI,Mei-juan ZHANG,Shuai LIU,Rui-na LI,Huai-bei ZHAO. Analysis on particle collision dynamics parameters in diesel exhaust stage [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 39-48.
[8] Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777.
[9] Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825.
[10] Xiang-jiu CHE,You-zheng DONG. Improved image recognition algorithm based on multi⁃scale information fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1747-1754.
[11] Jian WANG,Xin XU,Han GU,Duo-jun ZHANG,Sheng-ji LIU. Heating characteristics of DOC based on exhaust thermal management of diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 408-416.
[12] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
[13] Chang-cheng LIU,Zhong-chang LIU,Jing TIAN,Yun XU,Ze-yu YANG. In⁃cylinder exergy destruction during combustion process ofheavy⁃duty turbocharged diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1911-1919.
[14] Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044.
[15] Hong-wei ZHAO,Peng WANG,Li-li FAN,Huang-shui HU,Ping-ping LIU. Similarity retention instance retrieval method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2045-2050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!