Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2916-2923.doi: 10.13229/j.cnki.jdxbgxb20220503

Previous Articles     Next Articles

Enhanced Bagging ensemble learning and multi⁃target detection algorithm

Xiang-jiu CHE(),Ying-jie YU,Quan-le LIU   

  1. College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2022-05-01 Online:2022-12-01 Published:2022-12-08

Abstract:

Aiming at the problems of low localization accuracy and classification accuracy in medical imaging disease detection by existing target detection algorithms, a multi-target detection method based on dynamic weighted Bagging ensemble learning was proposed. Taking chest imaging disease detection as an example, the Coordinate Attention (CA) module was introduced to enhance the receptive field of the region and improve the weak learner's ability to locate the target region. The dynamic weighted Bagging ensemble learning method was used to give the weak learner voting weight according to the confidence. The variance of the model was reduced, the generalization error was improved, and the classification accuracy was improved. The experimental results show that in the chest imaging disease detection task, the average detection accuracy of the proposed algorithm reaches 41.9%, which is 2.5% higher than that of the YOLOv5 prototype, and G-mean is improved by 1.3%; after the model is weighted and integrated, the average detection accuracy rate reaches 81.06%, which is 1.58% higher than the original model, and has high positioning accuracy and classification accuracy. Therefore, the proposed algorithm can better complete the task of chest imaging disease detection.

Key words: computer application, chest imaging disease detection, dynamically weighted Bagging ensemble learning, coordinate attention

CLC Number: 

  • TP391.4

Fig.1

General structure of ensemble learning"

Fig.2

Detection method framework based on dynamic weighted Bagging integrated learning strategy"

Fig.3

Partial data display"

Table 1

disease label"

病理学标签疾病描述数量
主动脉扩张发生在主动脉血管壁的异常隆起3067
心脏扩大成年病人的心胸比率大于0.52300
实质化肺泡内充满液体、脓液、血液、细胞(包括肿瘤细胞)或其他物质,导致大叶性、弥漫性或多灶性不清混浊的病理过程。386
胸膜增厚涉及壁层或脏层胸膜的任何形式的增厚1981
胸腔积液胸腔内异常积液1032
肺纤维化肺里有多余的纤维组织1617

Fig.4

Data augmentation"

Fig.5

Detection frame size"

Fig.6

CA model"

Fig.7

Proportion of category distribution"

Fig.8

Dynamic weight Bagging ensemble learning"

Table 2

Side effects of ensemble learning"

模型测试例1测试例2测试例3
1
2
3
集成

Table 3

Confusion matrix"

真实情况预测结果
正例反例
正例TPFN
反例FPTN

Table 4

Comparison of recall performance of of different weak learners"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
Faster-RCNN0.5210.8300.5370.4340.4430.3540.520
YOLOv40.6320.7320.6040.5110.4820.3950.559
YOLOv50.6510.8000.6350.5320.5000.4520.595
CA-YOLOv50.6620.8280.6410.5380.5240.4640.610

Table 5

Comparison of mAP values of different weak learners"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
Faster-RCNN0.5000.5450.2020.1850.2830.1600.313
YOLOv40.6570.5250.2490.2090.3490.1900.363
YOLOv50.6720.5390.2630.2220.4020.2650.394
CA-YOLOv50.6990.5500.3230.2350.4280.2780.419

Table 6

G-mean value comparison of different weak learners"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
Faster-RCNN0.4630.5900.3750.4890.5000.4200.473
YOLOv40.5400.5810.3920.5240.5340.4610.505
YOLOv50.5890.5890.4030.5680.5380.4890.529
CA-YOLOv50.6020.5910.4420.5720.5430.5020.542

Table 7

Accuracy comparison before and after model integration"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
CA-YOLOv584.7689.7878.1376.9371.3475.9279.48
+集成模型85.3890.6579.0378.5172.6277.7380.65
+动态权重85.5091.0379.8078.9172.8878.2381.06

Fig.9

Comparison of actual detection effect diagrams"

Fig.10

Attention heatmap comparison"

1 de Carvalho Filho A O, de Sampaio W B, Silva A C, et al. Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index[J]. Artificial Intelligence in Medicine, 2014, 60(3): 165-177.
2 Choi W J, Choi T S. Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 37-54.
3 Zhang Z, Zhang X, Lin X, et al. Ultrasonic diagnosis of breast nodules using modified faster R-CNN[J]. Ultrasonic Imaging, 2019, 41(6): 353-367.
4 Ramachandran S, George J, Skaria S, et al. Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans[C]∥Medical Imaging 2018: Computer-Aided Diagnosis, Houston, Texas, USA, 2018, 10575: 347-355.
5 Johnson J M, Khoshgoftaar T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1):1-54.
6 申彦, 朱玉全, 宋新平. 一种采用渐进学习模式的SBS-CLearning分类算法[J]. 江苏大学学报:自然科学版, 2018, 39(6): 696-703.
Shen Yan, Zhu Yu-quan, Song Xin-ping. A classification learning algorithm of SBS-CLearning using step-by-step learning model[J]. Journal of Jiangsu University(Natural Science Edition), 2018, 39(6): 696-703.
7 Kazemi Y, Mirroshandel S A. A novel method for predicting kidney stone type using ensemble learning[J]. Artificial intelligence in Medicine, 2018, 84:117-126.
8 Farahani F V, Ahmadi A, Zarandi M H F. Lung nodule diagnosis from CT images based on ensemble learning[C]∥2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Niagara Falls, ON, Canada, 2015:1-7.
9 Fitriyani N L, Syafrudin M, Alfian G, et al. Development of disease prediction model based on ensemble learning approach for diabetes and hypertension[J]. IEEE Access, 2019, 7:144777-144789.
10 Wang Yu-yan, Wang Du-juan, Geng Na, et al. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection[J]. Applied Soft Computing, 2019, 77: 188-204.
11 Zheng Hao, Zhang Yi-zhe, Yang Lin, et al. A new ensemble learning framework for 3D biomedical image segmentation[J]. AAAI Technical Track: Machine Learning, 2019, 33(1): 5909-5916.
12 Gao X Y, Amin A A, Shaban H H, et al. Improving the accuracy for analyzing heart diseases prediction based on the ensemble method[J]. Complexity, 2021, 2021:1-10.
13 Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014:580-587.
14 Girshick R. Fast R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015:1440-1448.
15 Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
16 牛杰, 钱堃, 卜雄洙. 基于YOLOv3算法和深度特征的地点识别方法[J]. 江苏大学学报:自然科学版, 2021, 42(6): 733-737.
Niu Jie, Qian Kun, Bu Xiong-zhu. Place recognition method based on YOLOv3 and deep features[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(6): 733-737.
17 Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016:779-788.
18 Nguyen H Q, Lam K, Le L T, et al. VinDr-CXR: an open dataset of chest X-rays with radiologist's annotations[J/OL].[2022-04-15]. file:∥/C:/Users/ADMINI~1/AppData/Local/Temp/MicrosoftEdgeDownloads/4fb2e789-21c9-43c9-b06b-d06266b169fb/s41597-022-01498 -w.pdf
19 王进, 黄超, 王科, 等. 基于属性敏感卷积神经网络的行人属性分类[J]. 江苏大学学报:自然科学版, 2019, 40(4): 431-438.
Wang Jin, Huang Chao, Wang Ke, et al. Pedestrian attribute classification based on label sensitive convolutional neural network[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(4): 431-438.
20 Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018:7132-7141.
21 Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[J] Lecture Notes in Computer Science, 2018,11211: 3-19.
22 Hou Qin-bin, Zhou Da-quan, Feng Jia-shi. Coordinate attention for efficient mobile network design[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021:13713-13722.
23 袁梅, 全太锋, 黄俊, 等. 基于卷积神经网络的烟雾检测[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(4): 620-629.
Yuan Mei, Quan Tai-feng, Huang Jun, et al. Smoke detection based on convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(4): 620-629.
24 Kubat M, Matwin S. Addressing the curse of imbalanced training sets: one-sided selection[C]∥Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, Tennessee, USA, 1997:179-186.
25 Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
[1] Xian-yu QI,Wei WANG,Lin WANG,Yu-fei ZHAO,Yan-peng DONG. Semantic topological map building with object semantic grid map [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 569-575.
[2] Xiao-hu SHI,Jia-qi WU,Chun-guo WU,Shi CHENG,Xiao-hui WENG,Zhi-yong CHANG. Residual network based curve enhanced lane detection method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 584-592.
[3] Peng GUO,Wen-chao ZHAO,Kun LEI. Dual⁃resource constrained flexible job shop optimal scheduling based on an improved Jaya algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 480-487.
[4] Jin-Zhen Liu,Guo-Hui Gao,Hui Xiong. Multi⁃scale attention network for brain tissue segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 576-583.
[5] Gui-he QIN,Jun-feng HUANG,Ming-hui SUN. Text input based on two⁃handed keyboard in virtual environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1881-1888.
[6] Fu-heng QU,Tian-yu DING,Yang LU,Yong YANG,Ya-ting HU. Fast image codeword search algorithm based on neighborhood similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1865-1871.
[7] Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880.
[8] Feng-feng ZHOU,Hai-yang ZHU. SEE: sense EEG⁃based emotion algorithm via three⁃step feature selection strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1834-1841.
[9] Feng-feng ZHOU,Yi-chi ZHANG. Unsupervised feature engineering algorithm BioSAE based on sparse autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1645-1656.
[10] Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665.
[11] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427.
[12] Wen-jun WANG,Yin-feng YU. Automatic completion algorithm for missing links in nowledge graph considering data sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1428-1433.
[13] Xue-yun CHEN,Xue-yu BEI,Qu YAO,Xin JIN. Pedestrian segmentation and detection in multi-scene based on G-UNet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 925-933.
[14] Shi-min FANG. Multiple source data selective integration algorithm based on frequent pattern tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 885-890.
[15] Da-xiang LI,Meng-si CHEN,Ying LIU. Spontaneous micro-expression recognition based on STA-LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 897-909.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Xiao-lei1,LI Dan,YIN Yong-guang. Enzymatic preparation of linear malto oligosaccharides[J]. 吉林大学学报(工学版), 2009, 39(06): 1559 -1562 .
[2] SONG Chuan-Xue, GAO Jin, YANG Shu-Kai. Virtual simulation analysis about influence of suspension on full vehicle ride comfort[J]. 吉林大学学报(工学版), 2010, 40(增刊): 6 -00012 .
[3] GUO Song, GU Guo-Chang, CA Ze-Su, LIU Hai-Bo, SHEN Jing. Face detection based on skin color segmentation and improved AdaBoostSVM algorithm[J]. 吉林大学学报(工学版), 2011, 41(02): 473 -0478 .
[4] Song Yu-lai, Liu Yao-hui, Zhu Xian-yong, Wang Su-huan, Yu Si-rong. Effect of neodymium on microstructure and mechanical properties of AZ91 magnesium alloy[J]. 吉林大学学报(工学版), 2006, 36(03): 289 -0293 .
[5] Lu Ying-rong,Yang Yin-sheng,Lv Feng . Optimal vehicle routing problem based on fuzzy clustering analysis[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 147 -151 .
[6] ZHANG Ying-feng, MA Biao, ZHU Yuan, ZHANG Jin-le. State identification of power-shift steering transmission based on hypersphere support vector machine[J]. 吉林大学学报(工学版), 2012, 42(01): 13 -18 .
[7] MA Xun,WANG He,NA Jing-xin. Rib equivalence model of CAE analysis in car body concept design phase[J]. 吉林大学学报(工学版), 2009, 39(06): 1431 -1434 .
[8] YANG Ji-kuang,YE Ying-tai,PENG Qian,WU Shen-rong,GUO Jie. Application of spot weld model using solid element in simulation of front longitudinal beam crash[J]. 吉林大学学报(工学版), 2011, 41(6): 1542 -1548 .
[9] SHEN Yan-hu, SU Jiang, LIU Yong, YANG Zhi-gang, WANG Kun-kun. Design of piezoelectric vibratory feeder vertically driven by two piezoelectric vibrators[J]. 吉林大学学报(工学版), 2014, 44(6): 1669 -1675 .
[10] ZHANG Lei, ZHAO Yun-wei, YANG Zhuo, ZHAO Ji. Shear yield property of electrorheological polishing fluid[J]. , 2012, 42(05): 1145 -1150 .