Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2933-2940.doi: 10.13229/j.cnki.jdxbgxb20220550
Previous Articles Next Articles
Yang YAN1(),Zi-ru YOU1,Yuan YAO2,Wen-bo HUANG1()
CLC Number:
1 | 马腾, 洪芳艳, 赵强. 冠状动脉CTA对患者冠脉狭窄程度、分叉病变的诊断分析研究[J]. 影像科学与光化学, 2022, 40(2): 434-438. |
Ma Teng, Hong Fang-yan, Zhao Qiang. Study on the diagnosis and analysis of coronary artery stenosis and bifurcation lesions by coronary CTA[J]. Imaging Science and Photochemistry, 2022, 40(2): 434-438. | |
2 | 薛岚燕, 曹新容, 林嘉雯,等. 动静脉血管自动分类方法及其管径测量[J]. 仪器仪表学报, 2017, 38(9): 2307-2316. |
Xue Lan-yan, Cao Xin-rong, Lin Jia-wen, et al. Automatic classification of arterial and venous vessels and their diameter measurement[J]. Journal of Instrumentation, 2017, 38(9): 2307-2316. | |
3 | Alam M N, Le D, Yao X. Differential artery-vein analysis in quantitative retinal imaging: a review[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(3): 1102-1119. |
4 | Akbar S, Akram M U, Sharif M, et al. Arteriovenous ratio and Papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy[J]. Computer Methods and Programs in Biomedicine, 2018, 154: 123-141. |
5 | Yin X, Irshad S, Zhang Y. Classifiers fusion for improved vessel recognition with application in quantification of generalized arteriolar narrowing[J]. Journal of Innovative Optical Health Sciences, 2020, 13(1): 1950021. |
6 | Welikala R A, Foster P J, Whincup P H, et al. Automated arteriole and venule classification using deep learning for retinal images from the UK biobank cohort[J]. Computers in Biology & Medicine, 2017, 90:23-32. |
7 | Girard F, Cheriet F. Artery/vein classification in fundus images using CNN and likelihood score propagation[C]∥IEEE Global Conference on Signal & Information Processing, Quebec, Canada, 2017: 720-724. |
8 | Galdran A, Costa P, Bria A, et al. A no-reference quality metric for retinal vessel tree segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 2018: 82-90. |
9 | 吴昊, 平鹏, 孙立博, 等. 基于改进LRCN模型的驾驶行为图像序列识别方法[J]. 江苏大学学报:自然科学版, 2018, 39(3): 303-308, 329. |
Wu Hao, Ping Peng, Sun Li-bo, et al. Image sequence recognition method for driving behavior based on improved LRCN model[J]. Journal of Jiangsu University(Natural Science Edition), 2018, 39(3): 303-308, 329. | |
10 | Hu J, Wang H, Cao Z, et al. Automatic artery/vein classification using a vessel-constraint network for multicenter fundus images[J]. Frontiers in Cell and Developmental Biology, 2021, 9: No.659941. |
11 | 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. |
Tian Xuan, Wang Liang, Ding Qi. Overview of image semantic segmentation methods based on deep learning[J]. Journal of Software, 2019, 30(2):440-468. | |
12 | Zhou Z, Siddiquee M, Tajbakhsh N, et al. Unet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. |
13 | Ahn H, Yim C. Convolutional neural networks using skip connections with layer groups for super-resolution image reconstruction based on deep learning[J]. Applied Sciences, 2020, 10(6): 1959. |
14 | Gao Shang-hua, Cheng Ming-ming, Zhao Kai, et al. Res2net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. |
15 | Fu Jun, Liu Jing, Wang Yu-hang, et al. Stacked deconvolutional network for semantic segmentation[J/OL]. [2022-04-21]. |
16 | 权龙哲, 王建宇, 王旗, 等. 基于电磁振动与卷积神经网络的玉米品质精选装置[J]. 江苏大学学报:自然科学版, 2020, 41(3): 288-293, 313. |
Quan Long-zhe, Wang Jian-yu, Wang Qi, et al. Classification method of corn quality selection based onelectromagnetic vibration and convolutional neural network[J]. Journal of Jiangsu University(Natural Science Edition), 2020, 41(3): 288-293, 313. | |
17 | He Kai-ming, Zhang Xiang-yu, Ren Shao-qing, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, RI, USA, 2016: 770-778. |
18 | Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas[J/OL]. [2022-04-23]. . |
19 | 詹为钦, 倪蓉蓉, 杨彪. 基于注意力机制的PointPillars+三维目标检测[J]. 江苏大学学报:自然科学版, 2020, 41(3): 268-273. |
Zhan Wei-qin, Ni Rong-rong, Yang Biao. An attention-based PointPillars+3D object detection[J]. Journal of Jiangsu University(Natural Science Edition), 2020, 41(3): 268-273. | |
20 | Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. |
21 | Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]∥2016 Fourth International Conference on 3D Vision, CA, USA, 2016: 565-571. |
22 | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020, 42(2):318-327. |
23 | Yeung M, Sala E, Schönlieb C B, et al. Unified focal loss: generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation[J]. Computerized Medical Imaging and Graphics, 2022, 95: No.102026. |
24 | Hu Q, Abràmoff M D, Garvin M K. Automated separation of binary overlapping trees in low-contrast color retinal images[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Berlin, Heidelberg, 2013: 436-443. |
25 | 袁梅, 全太锋, 黄俊, 等. 基于卷积神经网络的烟雾检测[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(4): 620-629. |
Yuan Mei, Quan Tai-feng, Huang Jun, et al. Smoke detection based on convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(4): 620-629. | |
26 | 何欣, 李书琴, 刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别[J]. 计算机工程, 2021, 47(5): 285-291, 300. |
He Xin, Li Shu-qin, Liu Bin. Identification of grape leaf diseases based on multi-scale residual neural network[J]. Computer Engineering, 2021, 47(5): 285-291, 300. | |
27 | 李新春,马红艳,林森.基于局部邻域四值模式的掌纹掌脉融合识别[J].重庆邮电大学学报: 自然科学版, 2020, 32(4): 630-638. |
Li Xin-chun, Ma Hong-yan, Lin Sen. Palmprint and palm vein fusion recognition based on local neighbor quaternary pattern[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 47(5): 285-291, 300. | |
28 | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241. |
29 | Morano J, Hervella L S, Novo J, et al. Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images[J]. Artificial Intelligence in Medicine, 2021, 118(14): No.102116. |
30 | Girard F, Kavalec C, Cheriet F. Joint segmentation and classification of retinal arteries/veins from fundus images[J]. Artificial Intelligence in Medicine, 2019, 94: 96-109. |
31 | Chen Wen-ting, Yu Shuang, Wu Jun-de, et al. TR-GAN: topology ranking GAN with triplet loss for retinal artery/vein classification[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 2020: 616-625. |
[1] | Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202. |
[2] | Xiao-ying LI,Ming YANG,Rui QUAN,Bao-hua TAN. Unbalanced text classification method based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1889-1895. |
[3] | Xuan-jing SHEN,Xue-feng ZHANG,Yu WANG,Yu-bo JIN. Multi⁃focus image fusion algorithm based on pixel⁃level convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1857-1864. |
[4] | Dan HU,Xin MENG. Vessel search method by earth observation satellite based on time⁃varying grid [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1896-1903. |
[5] | Ming-hua GAO,Can YANG. Traffic target detection method based on improved convolution neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1353-1361. |
[6] | Ji-hong OUYANG,Ze-qi GUO,Si-guang LIU. Dual⁃branch hybrid attention decision net for diabetic retinopathy classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 648-656. |
[7] | Lin SONG,Li-ping WANG,Jun WU,Li-wen GUAN,Zhi-gui LIU. Reliability analysis based on cyber⁃physical system and digital twin [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 439-449. |
[8] | Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496. |
[9] | Jun YANG,Zhi-ming GAO. Dense correspondence calculation of 3D models based on unsupervised deformed network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2971-2983. |
[10] | Chun-ping HOU,Qing-yuan YANG,Mei-yan HUANG,Zhi-peng WANG. Cross⁃modality person re⁃identification based on semantic coupling and identity⁃consistence constraint [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2954-2963. |
[11] | Yuan-ning LIU,Lin ZHU,Xiao-dong ZHU,Zhen LIU,Hao-meng WU. Deep learning iris recognition method based on generative model boost training [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2924-2932. |
[12] | Xiao-ning LI,Hong-wei ZHAO,Dan-yang ZHANG,Yuan ZHANG. Image retrieval algorithm based on response value center weighted convolution feature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2669-2675. |
[13] | Shuai-na HUANG,Yu-xiang LI,Yue-heng MAO,Ai-ying BAN,Zhi-yong ZHANG. Black-box transferable adversarial attacks based on ensemble advGAN [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2391-2398. |
[14] | You QU,Wen-hui LI. Single-stage rotated object detection network based on anchor transformation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173. |
[15] | Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194. |
|