Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (1): 197-209.doi: 10.13229/j.cnki.jdxbgxb20221145

Previous Articles    

Molecular dynamics‒based stability of biomass prime coat oil

Shuang SHI(),Lan-qin LIN,Tao MA(),Lin-hao GU,Yan-ning ZHANG   

  1. College of Transportation,Southeast University,Nanjing 211189,China
  • Received:2022-10-25 Online:2023-01-01 Published:2023-07-23
  • Contact: Tao MA E-mail:shishuang@seu.edu.cn;matao@seu.edu.cn

Abstract:

To investigate the effect of different emulsifier contents on the stability performance of biomass emulsified asphalt, three types of emulsified asphalt with 1%, 3% and 5% anionic emulsifiers were prepared and analyzed by molecular dynamics simulation and macroscopic experiments. Firstly, the Molecular Simulation Software (Material Studio, MS) was used to construct a model of biomass emulsified asphalt with different emulsifier contents and the microscopic mechanism of the emulsifier was analyzed to improve the stability of the emulsified asphalt by the radial distribution function, interaction energy, interfacial layer thickness and solubility parameters of the emulsified asphalt system with different emulsifier contents. The results were validated by macro and micro tests including storage stability, particle size determination and infrared spectroscopy. The results show that at low emulsifier content, the emulsifier can reduce the interfacial tension between the oil-water interface and expand the transition region between the two phases (interfacial layer thickness), which will prevent interparticle agglomeration and reduce the emulsion particle size, thus reducing the settling rate and ensuring the stability of the emulsion. When the emulsifier content is further increased beyond the critical micelle concentration, the emulsifiers will agglomerate with each other and show larger peaks in the radial distribution function, and the phenomenon of emulsifier agglomeration will appear in the five-day storage stability test, resulting in a corresponding decrease in the proximity of the infrared absorption peak area ratio in the same wavelength band of the upper and lower layers of the biomass emulsified asphalt, and the emulsion stability decreases instead.

Key words: road engineering, stability, molecular dynamic, bio-oil emulsified asphalt, particle size, infrared analysis

CLC Number: 

  • A414

Table 1

Conventional indexes of base asphalt"

测试项目

25 ℃针入度

/0.1 mm

25 ℃延度

/cm

软化点/℃

60 ℃布氏黏度

/(Pa·s)

测试结果63.7>10047203
指标要求60~80>100>46>160
测试方法GB/ T0606-2011GB/ T0605-2011GB/ T0606-2011

GB/

T0625-

2011

Table 2

Model parameters of 12-component base asphalt"

组 分分子式添加分子数

模型组分

/%

实际组分

/%

比例误差

/%

沥青质C42 H54 O113.0812.440.64
吡咯C66 H81 N1
噻吩C51 H62 S1
胶质喹啉磷C40 H59 N226.7826.620.16
硫异戊?二烯C40 H60 S1
苯并二?苯并噻吩C18 H10 S23
吡啶酚C36 H57 N2
三甲基?苯氧烷C29 H50 O2
芳香酚过氢萘C35 H441444.1244.620.50
二辛基?环己烷?萘C30 H462
饱和酚角鲨烷C30 H62416.0216.320.30
霍烷C35 H622

Table 3

Molecular parameters of other components of bio-oil emulsified asphalt"

组分分子式分子量/(g·mol?1添加分子数与沥青比例
乳化剂

1%

3%

5%

C18H29O3NaS348.5

1

3

5

2.6

6.3

10.5

1%

3%

5%

H2O18.0

904

867

826

97.3

94.1

89.6

生物质油

软脂酸

亚麻酸

油酸

硬脂酸

C16 H32 O2

C18 H32 O2

C18 H34 O2

C18 H36 O2

256.4

280.5

282.5

284.5

1

2

2

1

9.1

Fig.1

Composition diagram of bio-oil emulsified asphalt model"

Fig.2

Density of bio-oil emulsified asphalt"

Table 4

Molecular model density and measured value of emulsified asphalt at 298 K"

乳化剂掺量/%密度/(g·cm-3误差/%
模拟值测量值

1

3

5

0.972

0.964

0.977

0.994

0.989

0.993

2.2

2.5

1.6

Fig.3

Atomic radial distribution function of emulsified asphalt model"

Fig.4

Radial distribution function of emulsified asphalt with different emulsifier contents"

Fig.5

Agglomeration of emulsifier with 5% emulsifier content"

Fig. 6

Interaction energy of emulsified asphalt with different emulsifier contents"

Fig. 7

Concentration distribution of each component of bio-oil emulsified asphalt along Z-axis"

Table 5

Values of cohesive energy density and solubility parameters of each component of bio-oil emulsified asphalt with different amounts of emulsifier"

成分参数乳化剂掺量
1%3%5%
乳化剂溶液

CED

/(J·cm3

105110421059
溶解度参数/(J·cm3?32.4232.2832.54
生物质沥青

CED

/(J·cm3

162.1152.3158.3
溶解度参数/(J·cm3?12.7312.3412.58
溶解度参数差值19.6919.9419.96

Fig.8

Hydrogen bonds between molecules of bio-oil emulsified asphalt"

Fig.9

Effect of emulsifier dosing on storage stability performance of biomass emulsified asphalt"

Table 6

Particle size of bio-oil emulsified asphalt with different emulsifier contents"

材料乳化剂掺量
1%3%5%
D101.7131.5851.663
D201.9961.7811.956
D302.2231.9452.182
D402.4372.1012.389
D502.6532.2632.593
D602.8932.4452.812
D703.182.6613.06
D803.562.953.39
D904.233.423.9
体积平均粒径2.8672.4062.72
粒径跨度0.9480.8100.862

Fig.10

Particle size distribution of bio-oil emulsified asphalt containing three emulsifiers"

Fig.11

Particle size indexes of bio-oil emulsified asphalt with different emulsifier contents"

Fig.12

Infrared spectra of bio-oil emulsified asphalt at different layers with different emulsifier content"

Table 7

Infrared characteristic peak area of evaporation residue of bio-oil emulsified asphalt with different emulsifier content"

实验组波数(cm-1
294828491455137511511124628

上层-1%

下层-1%

差值/%

694.08

709.94

2.29

429.37

462.41

7.69

776.77

781.80

0.65

135.20

155.14

14.75

25.58

25.46

-0.44

15.79

14.10

-10.72

6.666

5.687

-14.69

上层-3%

下层-3%

差值/%

673.85

695.61

3.23

402.91

397.10

-1.44

723.20

749.34

3.61

119.53

117.21

-1.95

31.00

32.03

3.33

31.77

31.47

-0.93

53.324

54.202

1.65

上层-5%

下层-5%

差值/%

645.053

647.668

0.41

430.310

439.435

2.12

787.90

804.69

2.13

130.04

139.37

7.17

88.333

47.091

-46.69

63.055

36.106

-42.74

54.509

72.863

33.67

Table 8

Proportion of emulsifier characteristic peak area in upper and lower branch tubes of storage stabilized tubes"

实验组乳化剂特征峰面积占基质沥青特征峰面积比值/%差值/%

上层-1%

下层-1%

2.31

2.15

0.16

上层-3%

下层-3%

6.05

6.01

0.04

上层-5%

下层-5%

10.31

7.68

2.63
1 屈鑫, 丁鹤洋,王超, 等. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022(19):1-11.
Qu Xin, Ding He-yang, Wang Chao, et al. Research on micro properties of bio-oil modified asphalt based on molecular dynamics simulation technique[J]. Materials Reports, 2022(19): 1-11.
2 李宁利, 朱壮壮, 栗培龙. 生物质油替代路用石油沥青的适用性研究[J]. 可再生能源, 2022, 40(4): 448-454.
Li Ning-li, Zhu Zhuang-zhuang, Li Pei-long. Study on applicability of biomass oil to replace asphalt for road use[J]. Renewable Energy Resources, 2022, 40(4): 448-454.
3 白爱明, 周新星. 生物质油再生沥青的自愈合性能研究[J]. 重庆交通大学学报:自然科学版, 2018, 37(8): 29-33.
Bai Ai-ming, Zhou Xin-xing. Self-healing properties of bio-oil regenerated asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018,37(8): 29-33.
4 张金喜, 张晗. 餐饮废油生物沥青路用性能的试验研究[J]. 北京工业大学学报, 2018,44(6): 904-909.
Zhang Jin-xi, Zhang Han. Laboratory evaluation of waste cooking oil-based bio-oil modified asphalt binder[J]. Journal of Beijing University of Technology, 2018, 44(6): 904-909.
5 Shi K, Fu Z, Song R, et al. Waste chicken fat oil as a bio-oil regenerator to restore the performance of aged asphalt: rheological properties and regeneration mechanism[J]. Road Materials and Pavement Design,2021: 1-25.
6 Girimath S, Singh D. Effects of bio-oil on performance characteristics of base and recycled asphalt pavement binders[J]. Construction and Building Materials, 2019, 227: 116684.
7 罗磊. 沥青与矿料界面相互作用的分子动力学模拟研究[D]. 西安: 长安大学交通学院, 2021.
Luo Lei. Molecular dynamics simulation of asphalt-aggregate interfacial interaction[D]. Xi'an: School of Transportation, Chang'an University, 2021.
8 范维玉, 赵品晖, 康剑翘, 等. 分子模拟技术在乳化沥青研究中的应用[J]. 中国石油大学学报:自然科学版, 2014, 38(6):179-185.
Fan Wei-yu, Zhao Pin-hui, Kang Jian-qiao, et al. Application of molecular simulation technology to emulsified asphalt study[J]. Journal of China University of Petroleum(Natural Science Edition), 2014, 38(6):179-185.
9 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093.
He Liang, Li Guan-nan, Zheng Yu-feng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093.
10 罗万力. 基于分子动力学模拟的阴离子沥青乳化剂界面活性研究[D]. 重庆:重庆交通大学交通运输学院, 2020.
Luo Wan-li. Study on interfacial activity of anionic asphalt emulsifier based on molecular dynamics simulation[D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2020.
11 Yu X, Wang J, Si J, et al. Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder[J]. Construction and Building Materials, 250:118868.
12 Yu C, Hu K, Yang Q, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations[J]. Polymers, 2021, 13(10): 1658.
13 Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel,2014, 115: 347-356.
14 Wang Xu. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169.
15 Fardin, Rajesh. Molecular simulations of asphalt rheology: application of time–temperature superposition principle[J]. Journal of Rheology, 2018, 62(4): 941-954.
16 陈华鑫, 贺孟霜, 纪鑫和, 等. 沥青性能与沥青组分的灰色关联分析[J]. 长安大学学报: 自然科学版,2014, 34(3): 1-6.
Chen Hua-xin, He Meng-shuang, Ji Xin-he, et al. Gray correlation analysis of asphalt performance and four fractions[J]. Journal of Chang'an University(Natural Science Edition), 2014, 34(3): 1-6.
17 殷开梁. 分子动力学模拟的若干基础应用和理论[D].杭州: 浙江大学理学院,2006.
Yin Kai-liang. Some basic applications and theories of molecular dynamics simulation[D]. Hangzhou: School of Science, Zhejiang University, 2006.
18 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D].重庆:重庆交通大学材料科学与工程学院, 2013.
Ding Yong-jie. Study on chemical structure characteristics of asphalt based on molecular simulation technology[D]. Chongqing: School of Materials Science and Engineering, Chongqing Jiaotong University, 2013.
19 李根泽. 基于分子模拟技术的路用沥青感温性研究[D]. 长春: 吉林大学交通学院, 2019.
Li Gen-ze. Study on temperature sensitivity of road asphalt based on molecular simulation technology[D].Changchun: College of Transportation, Jilin University, 2019.
20 康家祥. 非离子型环氧树脂乳化剂的制备及其性能研究[D]. 杭州: 浙江理工大学理学院, 2021.
Kang Jia-xiang. Study on the preparation and proper‐ties of non-ionic epoxy resin emulsifiers[D]. Hang‐zhou: College of Science, Zhejiang Sci-tech University, 2021.
21 李媛媛, 桑世林, 王凯杰, 等. 非离子型水性环氧树脂乳化剂的制备与性能研究[J]. 涂料工业, 2021, 51(9): 25-32.
Li Yuan-yuan, Sang Shi-lin, Wang Kai-jie, et al. Preparation and properties of nonionic waterborne epoxy resin emulsifier[J]. Paint & Coatings Industry, 2021, 51(9): 25-32.
22 李仙. 氯磺化聚乙烯改性丙烯酸酯水乳液及其相关分子动力学模拟[D]. 南京: 南京林业大学材料科学与工程学院, 2020.
Li Xian. Chlorosulfonated rubber modified acrylate water emulsion and its related molecular simulation[D]. Nanjing: School of Materials Science and Engineering, Nanjing Forestry University, 2020.
23 苏曼曼, 张洪亮, 张永平, 等. SBS与沥青相容性及力学性能的分子动力学模拟[J]. 长安大学学报:自然科学版, 2017, 37(3): 24-32.
Su Man-man, Zhang Hong-liang, Zhang Yong-ping, et al. Molecular dynamics simulation of compatibility and mechanical properties of sbs and asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(3): 24-32.
24 王岚, 张乐, 刘旸. 基于分子动力学的胶粉改性沥青中胶粉与沥青相容性研究[J]. 建筑材料学报, 2018, 21(4): 689-694.
Wang Lan, Zhang Le, Liu Yang. Compatibility of rubber powder and asphalt in rubber powder modified asphalt by molecular dynamics[J]. Journal of Building Materials, 2018, 21(4): 689-694.
25 Xu Tao, Li Chi-xuan, Fan Su-ying. Method for evaluating compatibility between sbs modifier and asphalt matrix using molecular dynamics models[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 4021207.
26 孔祥军. 长链烷基咪唑啉界面活性的构效关系研究[D]. 青岛:中国石油大学(华东)化学工程与环境学院, 2016.
Kong Xiang-jun. Study on structure-activity relationship of interfacial activity of long chain alkyl imidazoline[D]. Qingdao: College of Chemical Engineering and Environment), China University of Petroleum (East China), 2016.
27 Rivera J L, McCabe C, Cummings P T. Molecular simulations of liquid-liquid interfacial properties: Watern-alkane and water-methanoln-alkane systems[J]. Physical Review E, 2003, 67(1): 011603.
28 于立军. 阴离子表面活性剂在油水界面吸附行为的实验和理论研究[D]. 青岛:中国石油大学(华东)材料科学与工程学院, 2011.
Yu Li-jun. Experimental and theoretical study on adsorption behavior of anionic surfactants at oil-water interface[D]. Qingdao: School of Materials Science and Engineering, China University of Petroleum (East China), 2011.
29 李登辉, 李丽洁, 兰贯超, 等. SBS增韧石蜡/增塑剂共混相容性的分子动力学模拟[J]. 含能材料, 2018, 26(3): 223-229.
Li Deng-hui, Li Li-jie, Lan Guan-chao, et al. Molecular dynamics simulation of sbs toughened paraffin/plasticizer blend compatibility[J]. Energetic Materials, 2018, 26(3): 223-229.
30 武建民, 杜本发, 李洪珍. 基于乳化沥青颗粒平均粒径的透层油性能评价方法[J]. 公路, 2016, 61(7): 265-269.
Wu Jian-min, Du Ben-chao, Li Hong-zhen. Performance evaluation method of permeable oil based on average particle size of emulsified asphalt[J]. Highway, 2016, 61(7): 265-269.
31 何丽红, 温仙仙, 侯艺桐, 等. 阴离子乳化沥青粒径大小及分布影响因素分析[J]. 重庆交通大学学报:自然科学版, 2021, 40(6): 99-104.
He Li-hong, Wen Xian-xian, Hou Yi-tong, et al. Influence factors of particle size and distribution of anionic emulsified asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2021, 40(6): 99-104.
32 陶翔. 新型季铵盐沥青乳化剂的合成与性能研究[D]. 济南: 山东大学化学与化工学院, 2015.
Tao Xiang. Synthesis and properties of novel quaternary ammonium salt asphalt emulsifier[D]. Jinan: Shandong: School of Chemistry and Chemical Engineering, Shandong University, 2015.
33 Liu Hou. Influence of storage conditions on the stability of asphalt emulsion[J]. Petroleum Science and Technology,2017, 35(12): 1217-1223.
34 Kiihnl L, Braham A F. Developing a particle size specification for asphalt emulsion[J]. Construction and Building Materials, 2021, 293: 123414.
35 张虎. 乳化沥青颗粒粒径分布对沥青性能的影响[J]. 交通世界, 2016(19): 110-111.
Zhang Hu. Influence of emulsified asphalt particle size distribution on asphalt properties[J]. Transportation World, 2016(19): 110-111.
36 韦万峰, 郭鹏, 唐伯明. 再生沥青混合料新-旧沥青扩散混合效率研究综述[J]. 材料导报, 2017, 31(11): 109-114.
Wei Wan-feng, Guo Peng, Tang Bo-ming. Review of the research on diffusion efficiency of virgin-aged asphalt in recycled asphalt mixture[J]. Materials Reports, 2017, 31(11): 109-114.
37 全秀洁. 亲水基团对十二烷基阴离子乳化沥青稳定性及破乳过程的影响[D]. 重庆: 重庆交通大学交通运输学院, 2021.
Quan Xiu-jie. Effect of hydrophilic groups on stability and demulsification of dodecyl anionic emulsified asphalt[D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2021.
38 周艺, 李泉, 童瑶, 等. 再生剂对SBS改性沥青宏观性能与微观结构的影响[J]. 公路, 2022(6): 302-309.
Zhou Yi, Li Quan, Tong Yao, et al. Effect of regenerant on macroproperties and microstructure of sbs modified asphalt[J]. Highway, 2022(6): 302-309.
39 陈江,李响,韩路, 等. 废胎胶粉对沥青的改性机理研究[J]. 山西建筑, 2021, 47(1): 110-111, 196.
Chen Jiang, Li Xiang, Han Lu, et al. Study on modification mechanism of asphalt by waste tire rubber powder[J]. Shanxi Architecture, 2021, 47(1): 110-111, 196.
[1] Yan-min WANG,Wei-qi ZHANG,Guang-xin DUAN,Yang GE. Continuous non-singular terminal sliding mode control of electronic throttle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2127-2135.
[2] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[3] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[4] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[5] Hai-bin WEI,Shuan-ye HAN,Hai-peng BI,Qiong-hui LIU,Zi-peng MA. Intelligent sensing road active ice and snow removal system and experimental technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1411-1417.
[6] Shao-hua WANG,Kun CHU,De-hua SHI,Chun-fang YIN,Chun LI. Robust compound coordinated control of HEV based on finite⁃time extended state observation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1272-1281.
[7] Sui-ning ZHENG,Rui HE,Tian-yu LU,Zi-yi XU,Hua-xin CHEN. Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1381-1389.
[8] Shu-wei LAN,Dong-hua ZHOU,Xu CHEN,Nan-ming MO. Practical calculation method for the critical bearing capacity of double column bridge with high piers [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1105-1111.
[9] Bo-wen GUAN,Wen-jin DI,Fa-ping WANG,Jia-yu WU,Shuo-wen ZHANG,Zhi-xun JIA. Damage of concrete subjected to sulfate corrosion under dry⁃wet cycles and alternating loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1112-1121.
[10] Fan YANG,Chen-chen LI,Sheng LI,Hai-lun LIU. Numerical simulation of continuously reinforced concrete pavement with double⁃layer reinforcement under effect of temperature shrinkage [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1122-1132.
[11] De-feng HE,Dan ZHOU,Jie LUO. Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 726-734.
[12] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[13] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
[14] Yong PENG,Xiu-fang ZHANG,Ze-yu GUO,Xue-yuan LU,Yan-wei LI. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 178-187.
[15] Ya-zhen SUN,Zhi ZHENG,Wei-ming HUANG,Jin-chang WANG. Structural analysis of cement pavement with cracks based on state⁃space method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 188-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!