Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1725-1734.doi: 10.13229/j.cnki.jdxbgxb20171090

Previous Articles     Next Articles

Influence of structural seismic response of bridges crossing active fault

HUI Ying-xin1,2(),MAO Ming-jie1,LIU Hai-feng1,ZHANG Shang-rong1   

  1. 1. College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
    2. School of Transportation, Southeast University, Nanjing 210096,China
  • Received:2017-11-10 Online:2018-11-20 Published:2018-12-11

Abstract:

This paper presents a study on seismic response, which influences the Bridge Crossing Active Fault (BCAF). One bridge crossing strike-slip active fault is taken as an example. The seismic ground motions at the site of the bridge are generated following a hybrid simulation methodology. Multi-support excitation displacement input models and time history analysis method are used to calculate seismic response of the structures. The fault crossing position, crossing angle, arrangement of the pier are taken as the key parameters, and their influences on the seismic response are discussed. The results show that the fault crossing position, crossing angle, arrangement of the pier are important parameters influencing the seismic responses of the bridge, which shoul be taken into consideration in the design. With the change of the fault position from the mid-span to side-span of bridge, the most disadvantageous seismic response shows a trend of increase, being unfavorable to stress of the structure. When the fault perpendicularly crosses the bridge the seismic response caused by fault dislocation is minimal, and the optimal rationality and economy for piers internal force are presented. Generally, the demand of maximum transversal bending moment of BCAF does not necessarily occur at the highest pier, but on higher bent on the side of the fault with two bents. The structural response characteristics of the BCAF and the near fault bridge have significant influence, therefore should be paid particular attention in seismic design. The results in this research can be used as a reference to the seismic design and bridge location.

Key words: bridge engineering, influence of seismic response, multi-support excitations, bridges crossing active fault

CLC Number: 

  • U448

Fig.1

Schematic diagram of location between bridge and fault"

Fig.2

Acceleration, velocity and displacement time histories of fault-normal and fault-parallel components"

Fig.3

Response spectra in horizontal components"

Fig.4

Finite element discretization model of the bridge"

Fig.5

Schematic diagram of ground motion input direction"

Fig.6

Schematic diagram of fault crossing location design situation"

Fig.7

Comparison chart of seismic response"

Fig.8

Schematic diagram of structural deformation in Case 1"

Fig.9

Calculation model of different fault crossing Angle"

Fig.10

Curve of the most unfavorable moment at bottom of pier with angle of fault"

Fig.11

Curve of the most unfavorable moment at bottom of pier with angle of fault"

Fig.12

Curve of the most unfavorable displacement moment with angle of fault"

Fig.13

Schematic diagram of design situation"

Fig.14

Comparison chart of internal force response"

Fig.15

Comparison chart of displacement response"

[1] 惠迎新, 王克海, 李冲 . 跨断层地表破裂带桥梁震害研究及抗震概念设计[J]. 公路交通科技, 2014,31(10):145-151.
doi: 10.3969/j.issn.1002-0268.2014.10.009
Hui Ying-xin, Wang Ke-hai, Li Chong . Study of seismic damage and seismic conceptual design of bridges crossing fault-rupture zones[J]. Journal of Highway and Transportation Research and Development, 2014,31(10):145-151.
doi: 10.3969/j.issn.1002-0268.2014.10.009
[2] Park S W, Ghasemi H, Shen J , et al. Simulation of the seismic performance of the bolu viaduct subjected to near-fault ground motions[J]. Earthquake Engineering and Structural Dynamics, 2004,33:1249-1270.
doi: 10.1002/eqe.395
[3] Ucak A, Mavroeidis G P, Tsopelas P, et al. The response of the seismically isolated Bolu Viaduct subjected to fault crossing [C]//Structures Congress, ASCE, 2013: 817-826.
[4] Goel R K, Chopra A K . Linear analysis of ordinary bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2009,4(3):203-215.
doi: 10.1590/S0104-11692009000200003
[5] Goel R K, Qu B, Tures J , et al. Validation of fault rupture-response spectrum analysis method for curved bridges crossing strike-slip fault rupture zones[J]. Journal of Bridge Engineering, 2014,19(5):06014002.
doi: 10.1061/(ASCE)BE.1943-5592.0000602
[6] Saiidi M, Vosooghi A, Choi H , et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2014,19(8):182-190.
[7] 杨怀宇, 李建中 . 断层地震动对隔震桥梁地震响应的影响[J]. 同济大学学报:自然科学版, 2015,43(8):1144-1152.
doi: 10.11908/j.issn.0253-374x.2015.08.004
Yang Huai-yu, Li Jian-zhong . Response analysis of seismic isolated bridge under influence of fault-crossing ground motions[J]. Journal of Tongji University (Natural Science), 2015,43(8):1144-1152.
doi: 10.11908/j.issn.0253-374x.2015.08.004
[8] 沈建明 . 客运专线铁路跨越断裂带有关问题探讨[J]. 铁道工程学报, 2011,157(10):30-37.
doi: 10.3969/j.issn.1006-2106.2011.10.007
Shen Jian-ming . Study on relevant issues on passenger dedicated railway crossing fault zone[J]. Journal of Railway Engineering Society, 2011,157(10):30-37.
doi: 10.3969/j.issn.1006-2106.2011.10.007
[9] 帅少军, 戴万江, 罗嗣碧 . 跨断裂带桥梁设计研究[J]. 公路, 2016(4):127-130.
Shuai Shao-jun, Dai Wan-jiang, Luo Si-bi . Design Study of the bridges crossing fault[J]. Highway, 2016(4):127-130.
[10] 胡盛, 杨华振, 罗嗣碧 , 等. 海南铺前大桥总体设计[J]. 桥梁建设, 2016,46(1):94-99.
Hu Sheng, Yang Hua-zhen, Luo Si-bi , et al. Overall design of Puqian bridge in hainan[J]. Bridge Construction, 2016,46(1):94-99.
[11] 惠迎新, 王克海 . 基于多点激励位移输入模型的跨断层桥梁地震动输入方法研究[J]. 东南大学学报:自然科学版, 2015,45(3):557-562.
Hui Ying-xin, Wang Ke-hai . Earthquake motion input method for bridges crossing fault based on multi-support excitation displacement input model[J]. Journal of Southeast University (Natural Science), 2015,45(3):557-562.
[12] 惠迎新, 王克海 . 跨断层桥梁地震响应特性研究[J]. 桥梁建设, 2015,45(3):70-75.
Hui Ying-xin, Wang Ke-hai . Study of seismic response features of bridges crossing faults[J]. Bridge Construction, 2015,45(3):70-75.
[13] Somerville P. Characterizing near fault ground motion for the design and evaluation of bridges [C]//Proceedings of the 3rd National Seismic Conference and Workshop on Bridges and Highways, Portland, Oregon, 2002: 137-148.
[14] 田玉基, 杨庆山, 卢明奇 . 近断层脉冲型地震动的模拟方法[J]. 地震学报, 2007,29(1):77-84.
doi: 10.3321/j.issn:0253-3782.2007.01.009
Tian Yu-ji, Yang Qing-shan, Lu Ming-qi . Simulation method of near-fault pulse-type ground motion[J]. ACTA Seismological Sinica, 2007,29(1):77-84.
doi: 10.3321/j.issn:0253-3782.2007.01.009
[15] Makris N, Chang S P . Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures[J]. Earthquake Engineering and Structural Dynamics, 2000,29:85-107.
doi: 10.1002/(ISSN)1096-9845
[16] JTJ/T B02-01-2008. 公路桥梁抗震设计细则[S].北京: 人民交通出版社, 2008.
[17] Somerville P G . Magnitude scaling of the near-fault rupture directivity pulse[J]. Physics of the Earth and Planetary Interiors, 2003,137(1-4):201-212.
doi: 10.1016/S0031-9201(03)00015-3
[18] 田玉基, 杨庆山 . 地震地面运动作用下结构反应的分析模型[J]. 工程力学, 2005,22(6):170-174.
doi: 10.3969/j.issn.1000-4750.2005.06.029
Tian Yu-ji, Yang Qing-shan . Analysis models and methods for structural seismic responses[J]. Engineering Mechanics, 2005,22(6):170-174.
doi: 10.3969/j.issn.1000-4750.2005.06.029
[19] Pamuk A, Kalkan E, Ling H I . Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in turkey[J]. Soil Dynamics and Earthquake Engineering, 2005,25(7-10):581-589.
doi: 10.1016/j.soildyn.2004.11.011
[1] Wan⁃heng LI,Lin SHEN,Shao⁃peng WANG,Shang⁃chuan ZHAO. Damage assessment of bridge construction based onmulti⁃stage subregion mobile test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 773-780.
[2] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[3] WEI Zhi-gang, LIU Han-bing, SHI Cheng-lin, GONG Ya-feng. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement [J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[4] GONG Ya-feng, HE Yu-long, TAN Guo-jin, SHEN Yang-fan. Anti-overturning stability analysis for three-span continuous curved girder bridge with single column pier [J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[5] WEI Zhi-gang, SHI Cheng-lin, LIU Han-bing, ZHANG Yun-long. Dynamic characteristics of steel-concrete composite simply supported beam under vehicles [J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[6] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[7] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[8] TAN Guo-jin, LIU Zi-yu, WEI Hai-bin, WANG Long-lin. Calculation of natural frequency of simply supported beam bridge reinforced with eccentric prestressed tendons [J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[9] LIU Han-bing, SHI Cheng-lin, TAN Guo-jin. Finite element solution of composite beam with effect of shear slip [J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading [J]. 吉林大学学报(工学版), 2013, 43(03): 665-670.
[11] JIAO Chang-ke, LI Ai-qun, WU Xiao-ping. Double-deck long-span cable-stayed bridge seismic response to multi-support excitation [J]. , 2012, 42(04): 910-917.
[12] XIN Da-bo, WANG Liang, DUAN Zhong-dong, OU Jin-ping, LI Hui, LI Zhong-hua. Static characteristics of bridge deck sections of long-span bridges under simultaneous actions of wind and rain [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 174-179.
[13] TAN Guo-jin, WANG Long-lin, CHENG Yong-chun. Prediction method for cable tension state of cable-stayed bridges based on grey system theory in cold areas [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 170-173.
[14] GONG Ya-feng, CHENG Yong-chun, JIAO Yu-bo. Damage identification of urban overpasses based on static strain data and neural networks optimized by genetic algorithm [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 164-169.
[15] LIU Han-bing, ZHENG Ji-guang, ZOU Pin-de. Calculation on bearing capacity of eccentric compression reinforced concrete short column with circular combined-section [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Yao-dong, Li Guang-yu, Lian Jian-she. Effect of Al-doping on electrical and optical properties of ZnO films[J]. 吉林大学学报(工学版), 2007, 37(03): 495 -0498 .
[2] Xu Si-chuan,Li Rong-qing,Cheng Qin,Guo Ying-nan,Zhang Ji-peng,Sun Ji-mei,Wang Yong-fu . Influence of boundary condition on combustion of ethanol HCCI engine[J]. 吉林大学学报(工学版), 2007, 37(01): 74 -78 .
[3] Yang Wen, Shi Yong-jiu, Wang Yuan-qing, Shi Gang . Threedimensional finite element analysis on welding residual
stresses of construction steel
[J]. 吉林大学学报(工学版), 2007, 37(02): 347 -0352 .
[4] Qian Zhi-rui,Li Ming-zhe,Sun Gang,Tan Fu-xing,Jin Wen-ji . Numerical simulation on the process of sphere surface
multistep multipoint forming
[J]. 吉林大学学报(工学版), 2007, 37(02): 338 -0342 .
[5] Cheng Ping,Zhang Hai-tao,Gao Yan,Li Jun-feng,Wang Hong-yan . Application of ANN in property prediction of polyacrylate emulsion
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[6] Zhang Da-qing;He Qing-hua;Hao Peng;Chen Qian-gen . Robust trajectory tracking control of hydraulic excavator bucket[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[7] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .
[9] Shi Wen-ku, Hong Zhe-hao, Zhao Tao . Automobile multiobjective optimization design of power assembly mounting system and software development[J]. 吉林大学学报(工学版), 2006, 36(05): 654 -0658 .
[10] Song Yu-lai, Liu Yao-hui, Zhu Xian-yong, Wang Su-huan, Yu Si-rong. Effect of neodymium on microstructure and mechanical properties of AZ91 magnesium alloy[J]. 吉林大学学报(工学版), 2006, 36(03): 289 -0293 .