吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1940-1945.doi: 10.13229/j.cnki.jdxbgxb201606024

Previous Articles     Next Articles

Integrated design of aerodynamic and structural performance for wind turbine dedicated airfoil

CHEN Jin1, LI Song-lin1, 2, SUN Zhen-ye1, CHEN Gang1   

  1. 1.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;
    2.Ministry of Technology of Dongfang Electric Wind Power Co., Ltd.,Deyang 618000, China
  • Received:2015-05-21 Online:2016-11-20 Published:2016-11-20

Abstract: An integrated design method of aerodynamic and structural performance for wind turbine airfoil is proposed based on conformal transformation theory. In this method, the parameterized expression of an airfoil is presented by combing Theodorsen theory and B-spine curve. In order to optimize the aerodynamic and structural performance, an optimization mathematical model of the airfoil is established. The RFOIL software is used to solve the aerodynamic performance and a MATLAB code is used to solve the structural performance. The airfoil optimization is accomplished using an improved genetic algorithm. A new airfoil named CQUL210 with 21% maximum relative thickness is designed. Compared with the worldwide well known wind turbine airfoil DU93-W-210, of which the maximum relative thickness is also 21%, CQUL210 has higher aerodynamic performance both in smooth and rough transitions in the range of the design attack angle. Finite element analysis indicates that CQUL210 has higher structural performance than DU93-W-210. The method of this study can be applied to increase the wind capturing power and reduce the mass of the turbine blade.

Key words: mechanical design, wind turbine airfoil, integrated design, genetic algorithm, aerodynamic performance, structural performance

CLC Number: 

  • TK83
[1] Bjork A. Coordinates and calculations for the FFA-W1-xxx, FFA-W2-xxx and FFA-w3-xxx series of airfoils for horizontal axis wind turbines[R]. Stockholm,Sweden:FFATN, 1990.
[2] Fuglsang P, Bak C. Development of the Risϕ wind turbine airfoils[J]. Wind Energy,2004,7(2):145-162.
[3] Tangle J L, Somers D M. NREL airfoil families for HAWT’s[DB/OL].[2015-05-15]. https://www.researchgate.net/publication/237213681_NREL_airfoil_families_for_HAWT%27s.
[4] Timmer W A, van Rooij R P J O M. Summary of the delft university wind turbine dedicated airfoils[C]∥AIAA Paper,20030.
[5] Sepehr S, Arash H. Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines[J]. Journal of Renewable and Sustainable Energy, 2014,6(5):053105.
[6] Bak C, Gaudern N, Zahle F, et al. Airfoil design: finding the balance between design lift and structural stiffness[C]∥Journal of Physics: Conference Series,Copenhagen, Denmark, 2014,524:012017.
[7] 黎作武,陈江,陈宝,等. 风力机组叶片的先进翼型族设计[J]. 空气动力学报,2012,30(1):130-136.
Li Zuo-wu,Chen Jiang,Chen Bao,et al. Design of advanced airfoil families for wind turbines[J]. Acta Aeridynamic Sinica,2012,30(1):130-136.
[8] 陈进,王旭东,王立存. 基于泛函的风力机翼型形状优化设计研究[J]. 太阳能学报,2010,31(5):643-646.
Chen Jin, Wang Xu-dong, Wang Li-cun. Shape optimization of general airfoil profiles for wind turbines based on functional theory[J]. Acta Energiae Solaris Sinica,2010,31(5):643-646.
[9] 陈进,蒋传鸿,谢翌,等. 典型霜冰条件下的风力机翼型优化设计[J]. 机械工程学报,2014,50(7):154-160.
Chen Jin, Jiang Chuan-hong, Xie Yi, et al. Optimization design of airfoil for wind turbine under typical rime icing conditions[J]. Journal of Mechanical Engineering,2014,50(7):154-160.
[10] Wang Quan, Chen Jin, Pang Xiao-ping, et al. A new direct design method for the medium thickness wind turbine airfoil[J]. Journal of Fluids and Structures,2013,43:287-301.
[11] 廖庚华,刘庆平,陈坤,等. 基于CATIA的轴流风机叶片仿生参数化建模[J]. 吉林大学学报:工学版,2012,42(2):403-406.
Liao Geng-hua,Liu Qing-ping,Chen Kun,et al. Parameterized modeling of bionic blade of axial fan based on CATIA[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(2):403-406.
[12] 葛长江,葛美辰,梁平,等. 仿生缝翼的曾升作用[J]. 吉林大学学报:工学版,2014,44(2):387-391.
Ge Chang-jiang, Ge Mei-chen, Liang Ping, et al. High-lift effect of bionic slat[J]. Journal of Jilin University(Engineering and Technology Edition), 2014,44(2): 387-391.
[13] Abbott I H, Albert E, Doenhofe V. Theory of Wing Sections: Including a Summary of Airfoil Data[M]. New York: Dover Publications, 1959.
[14] 张石强. 风力机专用翼型及叶片关键设计理论研究[D]. 重庆:重庆大学机械工程学院,2010.
Zhang Shi-qiang. Study on the key theory of wind turbine blade and dedicated airfoils[D]. Chongqing: College of Mechanical Engineering, Chongqing University, 2010.
[15] Theodore T. Theory of wing sections of arbitrary shape[R]. Washington, DC, USA:National Advisory Committee for Aeronautics, 1931.
[16] Bir G S. User's guide to PreComp[DB/OL].[2015-05-15]. https://trace.tennessee.edu/cgi/viewcontent.cgi?filename=0&article=2311&context=utk_chanhonoproj&type=additional.
[17] Chun M, Niu Y. Airframe Stress Analysis and Sizing[M]. Hong Kong:Conmilit Press, 1999.
[1] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[2] ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777-1786.
[3] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[4] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398-1404.
[5] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[6] WANG Tao, SAN Xiao-gang, GAO Shi-jie, WANG Hui-xian, WANG Jing, NI Ying-xue. Dynamic characteristics of vertical shaft system of photoelectric turntable [J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[7] HE Ji-lin, CHEN Yi-long, WU Kang, ZHAO Yu-ming, WANG Zhi-jie, CHEN Zhi-wei. Energy flow analysis of crane hoisting system and experiment of potential energy recovery system [J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[8] XIE Chuan-liu, TANG Fang-ping, SUN Dan-dan, ZHANG Wen-peng, XIA Ye, DUAN Xiao-hui. Model experimental analysis of pressure pulsation in vertical mixed-flow pump system [J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[9] SUN Xiu-rong, DONG Shi-min, WANG Hong-bo, LI Wei-cheng, SUN Liang. Comparison of multistage simulation models of entire sucker rod with spatial buckling in tubing [J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[10] YOSHINO Tatsuo, FAN Lu-lu, YAN Lei, XU Tao, LIN Ye, GUO Gui-kai. Multiobjective optimization design for dummy chest structure based on MBNWS algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[11] LIU Kun, LIU Yong, YAN Jian-chao, JI Shuo, SUN Zhen-yuan, XU Hong-wei. Dynamic analysis of sit-to-stand human motion based on in vitro-sensor detection [J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[12] LI Qi-liang, CAO Guan-ning, LI Xuan, YANG Zhi-gang, ZHONG Li-yuan. Multi-parameters aerodynamic optimization of sedan [J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[13] LIU Zhi-feng, ZHAO Dai-hong, WANG Yu-mo, HUN Lian-ming, ZHAO Yong-sheng, DONG Xiang-min. Relationship between bearing capacity of heavy machine hydrostatic rotary table and temperature field distribution of oil pad [J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[14] CAO Jing-hua, KONG Fan-sen, RAN Yan-zhong, SONG Rui-chen. Back pressure controller design of air compressor based on fuzzy self-adaptive PID control [J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[15] LI Rui, ZHANG Lu-yang, LIU Lin, WU Yue-yuan, CHEN Shi-wei. Magneto-rheological vibration isolation for three-span bridge based on similarity theory [J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Guo-lin, FU Nai-ji, ZHANG Jian, PEI Zi-rong. Simulation of the radial tire curing process based on K-R kinetic model[J]. 吉林大学学报(工学版), 2013, 43(03): 659 -664 .
[2] CHI Xue-fen, WU Di, LIU Dan. IBP+MMBP/Geo/1/K vacation queuing system with threshold[J]. 吉林大学学报(工学版), 2013, 43(03): 781 -787 .
[3] LONG Xue-qin, GUAN Hong-zhi, QIN Huan-mei. Self-organization of hierarchies of urban roads based on efficiency and safety[J]. 吉林大学学报(工学版), 2013, 43(05): 1222 -1229 .
[4] ZONG Fang, ZHANG Yi-shan, WANG Zhan-zhong, LI Zhi-yao. Parking pricing analysis in urban central business district[J]. 吉林大学学报(工学版), 2013, 43(05): 1235 -1240 .
[5] ZHAO Wei, SUN Han-xu, JIA Qing-xuan, ZHANG Yan-heng, YU Tao. Mechanical analysis and optimal design of a new spherical mobile robot with two moving modes[J]. 吉林大学学报(工学版), 2013, 43(05): 1386 -1394 .
[6] WANG Sheng-man. Stretch bend forming defects of stainless steel profiles of metro vehicles[J]. 吉林大学学报(工学版), 2013, 43(06): 1546 -1550 .
[7] LU Chuan-guo, FENG Xin-xi, KONG Yun-bo, ZHANG Di. Data association for multi-passive-sensor system based on Kullback-Leibler divergence[J]. 吉林大学学报(工学版), 2013, 43(06): 1696 -1701 .
[8] KUI Hai-lin,WANG Hai-zhou,NI Wei-xin,CHEN Yun-feng,LI Jun. Flow characteristics in diesel helical intake port bionic with non-smooth surface[J]. 吉林大学学报(工学版), 2014, 44(3): 668 -674 .
[9] SUN Da-xu, LAN Feng-chong, HE Xing-fu, CHEN Ji-qing. Self-adaptive composite ABS of dual-motor four-wheel drive electric vehicle[J]. 吉林大学学报(工学版), 2016, 46(5): 1405 -1413 .
[10] LI Hui, WANG Yan-jiang, LIU Bao-di, LIU Wei-feng, WANG Xiao-meng. Extraction algorithm of salient object by fast dictionary learning and feature rarity[J]. 吉林大学学报(工学版), 2016, 46(5): 1710 -1717 .