›› 2012, Vol. 42 ›› Issue (05): 1135-1139.

Previous Articles     Next Articles

3-D integrated optimization of blade forward-curved angle of hydraulic retarder

YAN Qing-dong1,2, ZOU Bo1, WEI Wei1,2   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. National Key Lab of Vehicle Transmission, Beijing Institute of Technology, Beijing 100081, China
  • Received:2011-07-06 Online:2012-09-01 Published:2012-09-01

Abstract: To optimize the blade forward-curved angle of the hydraulic retarder, a 3-D integrated optimization simulation platform was built. Taking the blade angle as the design variable, the design of experiment was performed using the CFD analysis as the solver, and a response surface method model was built according to the test sample results, the optimization was accomplished. A set of the optimized blade curved angle parameters of the rotor and stator wheels were obtained. The effects of the blade angle parameters on the internal flow characteristics and the brake performances were analyzed, and the brake performances before and after the optimization were compared using the test data. The results showed that the brake performances of the hydraulic retarder with optimal blade angle parameters were improved obviously. The built 3-D integrated optimization platform is accurate and reliable.

Key words: turn and control of fluid, hydraulic retarder, 3-D integrated optimization, design of experiment, response surface method

CLC Number: 

  • TH137.332
[1] 姚寿文,王晓龙.液力减速器叶栅系统优化及制动动力学仿真[J].机械设计,2007 (12):21-23,42. Yao Shou-wen, Wang Xiao-long. Optimization on blade grid system of hydraulic reducer and braking dynamics simulation[J]. Journal of Machine Design, 2007 (12):21-23,42.
[2] 严军,何仁. 液力缓速器叶片变角度的缓速性能分析[J].农业机械学报,2009(4):206-209,226. Yan Jun,He Ren. Performance analysis for hydrodynamic retarder with different vanes[J]. Transactions of the Chinese Society for Agricultural Machinery,2009(4):206-209,226.
[3] 王振国,陈小前,罗文彩,等. 飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006.
[4] 王健,葛安林,雷雨龙,等. 基于三维流动理论的液力变矩器设计流程[J]. 吉林大学学报:工学版,2006,36(3):315-320. Wang Jian,Ge An-lin,Lei Yu-long,et al. Design flow of torque converter based on three dimensional flow theory[J]. Journal of Jilin University(Engineering and Technology Edition) ,2006,36(3):315-320.
[5] 魏巍, 基于三维流场理论的液力变矩器参数集成优化设计系统.北京:北京理工大学机械工程学院,2006. Wei Wei. Parameters integrated optimization design system of hydrodynamic torque converter based on 3D flow field theory. Beijing:School of Mechanical Engineering,Beijing Institute of Technology, 2006.
[6] 邹波,陈日军,唐正华,等.液力减速器内流道数值建模方法研究[J].机床与液压,2011,39(9):100-104. Zou Bo,Chen Ri-jun,Tang Zheng-hua, et al. Research on parametric modeling method of hydraulic retarder cascade[J].Machine Tool & Hydraulics, 2011,39(9):100-104.
[7] 魏巍,李慧渊,邹波,等. 液力减速器制动性能及其两相流分析方法研究[J]. 北京理工大学学报,2010(11):1281-1284,1320. Wei Wei, Li Hui-yuan, Zou Bo,et al. Study on braking performance and analysis of two-phase flow in vehicular hydraulic retarder[J]. Transactions of Beijing Institute of Technology, 2010(11):1281-1284,1320.
[1] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[2] HE Ren, CHEN Shan-shan. Braking stability of tractor-semitrailer based on gear-shifting strategy of hydraulic retarder [J]. 吉林大学学报(工学版), 2017, 47(6): 1677-1687.
[3] WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[4] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[5] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[6] ZHANG Min, LI Song-jing, CAI Shen. Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump [J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[7] GU Shou-dong, LIU Jian-fang, YANG Zhi-gang, JIAO Xiao-yang, JIANG Hai, LU Song. Characteristics of solder paste jetting valve driven by piezostack [J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[8] YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi. Development and prospect of digital hydraulic valve and valve control system [J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
[9] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[10] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
[11] ZHAO Cun-ran, LIU Wei, JIANG Ji-hai, SHAO Hui, TIAN Yong. Accelerated model of swash-plate axial piston pump [J]. 吉林大学学报(工学版), 2016, 46(4): 1124-1129.
[12] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, YANG Li-guang, XI Yuan, LIU Jin-qiao. Hydraulic system thermal characteristics of loader working device [J]. 吉林大学学报(工学版), 2016, 46(3): 811-817.
[13] CHEN Jin-shi, WANG Guo-qiang, GONG Xun, WANG Xin, WANG Li, DU Yang. Characteristics of cartridge one-way relief valve [J]. 吉林大学学报(工学版), 2016, 46(2): 465-470.
[14] ZHOU Jie, LUO Yan, WANG Xun, WANG Hui, LI Yang, TAO Ya-ping. Multi-objective optimization of stamping forming process of head based on response surface model [J]. 吉林大学学报(工学版), 2016, 46(1): 205-212.
[15] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, LIU Yu-fei, XI Yuan. Match and simulation analysis of hydraulic system radiator of wheel loader [J]. 吉林大学学报(工学版), 2015, 45(4): 1124-1129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!