Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 788-797.doi: 10.13229/j.cnki.jdxbgxb20180285

Previous Articles     Next Articles

Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer

Lei ZHANG(),Bao⁃guo LIU,Zhao⁃fei CHU   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-03-29 Online:2019-05-01 Published:2019-07-12

Abstract:

To study the influence of uneven settlement on the structure of inclined shaft segment caused by the drainage of overlying water?bearing sandstone after coal mining, a similar simulation test was carried out on the area where inclined shaft crossed the boundary between coarse?grained sandstone and sandy mudstone. The settlement rule of water?bearing sandstone and longitudinal and hoop stress?strain distribution of inclined shaft segment was simulated by model test in different formation pressure, pore pressure and drainage rate. The distribution rule and influencing factors of additional stress in the inclined shaft segment were analysed. At the same time, according to the model test, the influence of additional stress, surrounding rock pressure and pore?water pressure caused by uneven settlement on the inclined shaft segment was put forward.

Key words: civil engineering, tunnelling engineering, model test, uneven settlement, additional stress

CLC Number: 

  • TU452

Fig.1

Crossing stratigraphic profile for shield shaft and simulation area"

Table 1

Basic parameters of ground"

介质 ρ/(g·cm-3) E/GPa σ c/MPa n/% k/(cm·s-1 M
A 2.24 13.8 19.7 23.1 6.21×10-5 0.71
B 2.49 28.9 41.5 12.9 1.79×10-7 0.74

Fig.2

Compression drainage deformation curves of similar material of coarse grained sandstone"

Table 2

Basic parameters of similar materials of ground"

介质

ρ/

(g·cm-3

E/MPa σ c/MPa n/% k/(cm·s-3 M
a 1.81 168 0.46 23.3 4.59×10-4 0.72
b 1.76 311 0.92 - - 0.74

Fig.3

Shield inclined shaft model"

Fig.4

Whole test model"

Fig.5

Size of model bench and sensors arrangement"

Fig.6

Arrangement of strain gauge rosette oninclined shaft"

Table 3

Cases of aquifers dewatering tests"

试验工况 地层荷载/kPa 孔隙水压/kPa

排水速率/

(L?min—1)

I 100 20 0.1
II 100 20 0.4
III 100 40 0.4

Fig.7

Paving model"

Fig.8

Curves of pore water pressure and soil pressure"

Fig.9

Ground settlement curves of 3 cases"

Fig.10

Curves of axial strain of each section of inclined shaft under 3 conditions"

Fig.11

Schematic diagram of longitudinal strain and internal force of inclined shaft"

Fig.12

Longitudinal moment and axial force curves of inclined shaft before and after water drainaging"

Table 4

Increment percentage of the longitudinal axial thrust and moment of inclined shaft caused by dewatering"

内力 工况/截面 1 2 3 4 5
轴力 I 18.3 35.4 32.5 38.8 19
II 16.2 24.7 35.6 40.2 22.2
III 25.5 43.2 44.9 61.1 30.9
弯矩 I 22.1 30.4 42.4 68.9 24.5
II 23.2 36.9 50.5 53 22.9
III 35.2 40.2 74 75.1 33.2

Fig.13

Distribution of minimum principal stress on inclined shaft before and after dewatering"

Table 5

Increment percentage of minimum principal stress on inclined shaft caused by dewatering"

位置 工况 截面
1 2 3 4 5
拱顶 I 23.0 19.9 17.3 30.9 16.9
II 22.2 23.4 21.3 25.9 14.1
III 29.8 35.1 43.3 45.6 18.4
拱腰 I 16.4 17.4 22.3 31.2 20.7
II 17.0 12.6 13.7 33.8 19.9
III 23.4 19.0 27.2 35.1 22.1
拱底 I 26.1 20.7 31.0 27.4 16.1
II 23.1 21.9 19.9 23.7 14.2
III 28.7 39.7 42.4 43.4 24.6
1 Shi X M , Liu B G , Tannant D ,et al . Influence of consolidation settlement on the stability of inclined TBM tunnels in a coal mine[J]. Tunnelling & Underground Space Technology, 2017, 69: 64⁃71.
2 黄家会, 杨维好 . 井壁竖直附加力变化规律模拟试验研究[J]. 岩土工程学报, 2006, 28(10): 1204⁃1207.
Huang Jia⁃hui , Yang Wei⁃hao . Study on variation of vertical additional force on shaft lining by simulation tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1204⁃1207.
3 李文平 . 徐淮矿区深厚表土底含失水压缩变形实验研究[J]. 煤炭学报, 1999, 24(3): 9⁃13.
Li Wen⁃ping . Experimental study of water loss compression deformation at the bottom of deep surface of Xuhuai mining area[J]. Journal of China Coal Society, 1999, 24(3): 9⁃13.
4 李文平 . 深部土层失水变形时土与井壁相互作用试验与理论研究[J]. 岩土工程学报, 2000, 22(4): 475⁃480.
Li Wen⁃ping . Testing and theoretical studies on the interaction between soil and shaft wall during deep soil compression due to losing water[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 475⁃480.
5 刘希亮, 罗静 . 深厚表土底部含水层疏水沉降试验及数值模拟研究[J]. 煤炭学报, 2004, 29(2): 172⁃176.
Liu Xi⁃liang , Luo Jing . Experimental and numerical simulation study on the hydrophobic settlement of the aquifer at the bottom of the deep surface[J]. Journal of China Coal Society, 2004, 29(2): 172⁃176.
6 何川 . 盾构/TBM施工煤矿长距离斜井的技术挑战与展望[J]. 隧道建设, 2014, 34(4): 287⁃297.
He Chuan . Challenges and prospectives of construction of long⁃distance inclined shafts of coal mines by shield/ TBM [J]. Tunnel Construction, 2014, 34(4): 287⁃297.
7 侯公羽, 梁荣, 龚砚芬,等 . 煤矿长斜井TBM施工安全风险分析与趋势预测[J]. 岩土力学, 2014(增刊2): 325⁃331.
Hou Gong⁃yu , Liang Rong , Gong Yan⁃fen , et al . Risk analysis and trend prediction of long inclined⁃shaft construction in coalmine by TBM [J]. Rock and Soil Mechanics, 2014(Sup.2): 325⁃331.
8 储昭飞, 刘保国, 张磊,等 . 孔隙砂岩三轴压缩排水试验及地层失水沉降计算[J]. 岩土力学,2017(增刊1): 225⁃232.
Chu Zhao⁃fei , Liu Bao⁃guo , Zhang Lei , et al . Triaxial compression drainage tests on porous sandstones and calculation of dewatering⁃induced settlement of aquifer layer [J]. Rock and Soil Mechanics, 2017(Sup.1): 225⁃232.
9 钱自卫, 曹丽文, 姜振泉,等 . 孔隙砂岩多次化学注浆试验研究[J]. 岩土力学, 2014, 35(8): 2226⁃2240.
Qian Zi⁃wei , Cao Li⁃wen , Jiang Zhen⁃quan , et al . Research on multiple chemical grouting experiment of porous sandstone [J]. Rock and Soil Mechanics, 35(8):2226⁃2240.
10 许江, 杨红伟, 李树春,等 . 循环加、卸载孔隙水压力对砂岩变形特性影响实验研究[J]. 岩石力学与工程学报, 2009, 28(5): 892⁃899.
Xu Jiang , Yang Hong⁃wei , Li Shu⁃chun , et al . Experimental study of effects of cyclic loading and unloading pore water pressures on deformation characteristic of sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 892⁃899.
11 Wong T F , David C , Zhu W . The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B2): 3009⁃3025.
12 李小琴, 李文平 . 深厚表土底含失水变形时土与井壁相互作用弹塑性模型[J]. 岩土工程学报, 2005, 27(3): 329⁃332.
Li Xiao⁃qin , Li Wen⁃ping . Elasto⁃plastic model of the interaction between soil and shaft wall during deep soil compression due to losing water[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 329⁃332.
13 史小萌, 刘保国, 李涛,等 . 含水层疏排水沉降引起盾构斜井管片应力变形分析[J]. 岩石力学与工程学报, 2016 (增刊1): 3057⁃3063.
Shi Xiao⁃meng , Liu Bao⁃guo , Li Tao , et al . Stress and deformation analysis of shield incline shafts segment due to dewater settlement of aquifer [J]. Chinese Journal of Rock Mechanics and Engineering, 2016(Sup.1): 3057⁃3063.
14 刘金辉, 李文枭, 刘宇森,等 . 多孔含水岩层的相似材料配比研究[J]. 岩土力学, 2018, 39(2): 657⁃664.
Liu Jin⁃hui , Li Wen⁃xiao , Liu Yu⁃sen , et al . A method for determining the ratio of similar material to simulate porous water⁃bearing stratum [J]. Rock and Soil Mechanics, 2018, 39(2): 657⁃664.
15 王士民, 于清洋, 彭博,等 . 空洞对盾构隧道结构受力与破坏影响模型试验研究[J]. 岩土工程学报, 2017, 39(1): 89⁃98.
Wang Shi⁃min , Yu Qing⁃yang , Peng Bo , et al . Model tests on influences of cavity defects on mechanical characteristics and failure laws of segment linings of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 89⁃98.
16 志波由纪夫,川島一彦 . シ―ルドトソネルの耐震解析に用いる長手方向覆土剛性の評價法[C]//土木学会論文集, 东京,1988 : 319⁃327.
17 志波由纪夫,川島一彦 . 応答変位法によるシ―ルドトソネルの地震时断面力の算定法[C]//土木学会論文集, 东京,1988 : 385⁃394.
[1] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[2] XIE Chuan-liu, TANG Fang-ping, SUN Dan-dan, ZHANG Wen-peng, XIA Ye, DUAN Xiao-hui. Model experimental analysis of pressure pulsation in vertical mixed-flow pump system [J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[3] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[4] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[5] WANG Teng, ZHOU Ming-ru, MA Lian-sheng, QIAO Hong-xia. Fracture grouting crack growth of collapsible loess based on fracture theory [J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[6] ZHENG Yi-feng, MAO Jian, LIANG Shi-zhong, ZHENG Chuan-feng. Negative skin friction of pile foundation considering soil consolidation in high fill site [J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
[7] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[8] GUO Nan, ZHANG Ping-yang, ZUO Yu, ZUO Hong-liang. Bending performance of glue-lumber beam reinforced by bamboo plyboard [J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[9] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[10] GUO Xue-dong, MA Li-jun, ZHANG Yun-long. Analytical solution of the double joint layer composite beam with shear-slip under vertical concentrated load [J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[11] HOU Zhong-ming, WANG Yuan-qing, XIA He, ZHANG Tian-shen. Simply-supported steel-concrete composite beams under moving load [J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[12] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[13] WANG Chun-gang, ZHANG Zhuang-nan, ZHAO Da-qian, CAO Yu-fei. Experimental investigation of Σ-section channel steel with complex edge stiffeners and web holes under axial compression [J]. 吉林大学学报(工学版), 2015, 45(3): 788-796.
[14] SU Ying-she,YANG Yuan-yuan. Analysis of load transfer ratio of soil arching in sparse row piles [J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
[15] LI Hai-feng,GUO Xiao-nong,LUO Yong-feng,GAO Xuan-neng. Collapse resistance behavior of Ferris wheel with stay cables [J]. 吉林大学学报(工学版), 2015, 45(2): 406-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!