吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1472-1481.doi: 10.13229/j.cnki.jdxbgxb201705019

Previous Articles     Next Articles

Fracture grouting crack growth of collapsible loess based on fracture theory

WANG Teng1, 2, ZHOU Ming-ru1, 2, MA Lian-sheng3, QIAO Hong-xia1, 2   

  1. 1.Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China;
    2.Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China;
    3. School of Science,Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2016-06-21 Online:2017-09-20 Published:2017-09-20

Abstract: In order to study the diffusion mechanism of grout in soil body collapsible loess area, a simulation analysis method of grout flowing diffusion in 2D surface is proposed based on fracture mechanics theory. The formation pattern of crack was described, the failure criterion and judgment method of the crack growth in fracture grouting were established, the problems of crack growth and coupling of seepage and stress were solved. Meanwhile, by setting up the crack growth equation with ABAQUS software, the fracture grouting pressure and the influence of physico-mechanical properties of soil body on the length of crack growth were analyzed. Results show that, to calculate the facture grouting pressure, crack growth length and the soil body strength parameters must be considered. In loess fracture grouting, fracture grouting can not obtained by continuous pressure, which should replaced by segmented pressure to ensure the aggregation of energy in crack growth process. Laboratory model experiments were carried out and the results are in good agreement with that of model analysis, verifying the proposed simulation analysis method.

Key words: civil engineering, collapsible loess, fracture grouting, crack length, fracture mechanics, stress coupling, expansion path

CLC Number: 

  • TU472.6
[1] 张霄.地下工程动水注浆过程中浆液扩散与封堵机制研究及应用[D].济南:山东大学土木工程学院,2011.
Zhang Xiao. Study on mechanism of slurry diffusion and sealing at the process of underground engineering moving water grouting and its application[D].Ji'nan: School of Civil Engineering, Shangdong University,2011.
[2] 李利平,李术才,赵勇,等. 超大断面隧道软弱破碎围岩渐进破坏过程三维地质力学模型试验研究[J].岩石力学与工程学报,2012,31(3): 550-560.
Li Li-ping, Li Shu-cai, Zhao Yong, et al. 3D geomechanical model for progressive failure progress of weak broken surrounding rock in super large section tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 550-560.
[3] Swedenborg S, Dahlstrom L O. Rock mechanics effects of cement grouting in hard rock masses[C]∥Proceedings of the 2003 Specialty Conference on Grouting at the Third International Conference on Grouting and Ground Treatment, New Orleans, 2003: 1089-1102.
[4] 刘汉龙,赵明华. 地基处理研究进展[J].土木工程学报,2016,49(1):96-115.
Liu Han-long, Zhao Ming-hua. Review of ground improvement technical and its application in China[J].China Civil Engineering Journal, 2016,49(1):96-115.
[5] Bezuijen Z,Grotenhuis R T,Tol A F V, et al. Analytical model for fracture grouting in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(6): 611-620.
[6] Gothäll R, Stille H. Fracture-fracture interaction during grouting[J]. Tunnelling and Underground Space Technology, 2010, 25(3): 199-204.
[7] 郭炎伟,贺少辉,管晓明,等.劈裂注浆复合土体平面等效弹性模型理论研究[J].岩土力学,2015,36(8):2193-2201.
Guo Yan-wei, He Shao-hui, Guan Xiao-ming,et al. Theoretical study of plane equivalent elastic model of composite soils with fracturing grouting[J].Rockand Soil Mechanics,2015,36(8):193-2201.
[8] Gustafson G, Claesson J, Fransson A. Steering parameters for rock grouting[J]. Journal of Applied Mathematics, 2013,22(5): 1643-1652.
[9] 黄明利,管晓明,吕奇峰. 基于弹性力学的诱导劈裂注浆机制分析[J].岩土力学,2013,34(7) :2059-2064.
Huang Ming-li, Guan Xiao-ming, Lyu Qi-feng. Mechanism analysis of induced fracture grouting based on elasticity[J]. Rock and Soil Mechanics, 2013,34(7): 2059-2064.
[10] 李鹏,张庆松,张霄,等. 基于模型试验的劈裂注浆机制分析[J].岩土力学,2014,35(11):3221-3230.
Li Peng, Zhang Qing-song, Zhang Xiao, et al. Analysis of fracture grouting mechanism based on model test[J]. Rock and Soil Mechanics, 2014, 35(11): 3221-3230.
[11] 邹金锋,罗恒,李亮,等. 考虑中主应力时土体劈裂灌浆力学机制的大变形分析[J].岩土力学,2008,29(9): 2515-2520.
Zou Jin-feng, Luo Heng, Li Liang, et al. Mechanism analysis of fracture grouting in soil with large strain considering intermediate principal stress[J]. Rock and Soil Mechanics, 2008, 29(9): 2515-2520.
[12] 邹金锋,童无欺,罗恒,等. 基于Hoek-Brown 强度准则的裂隙岩体劈裂注浆力学机理[J]. 中南大学学报:自然科学版,2013,44(7):2889-2896.
Zou Jin-feng, Tong Wu-qi, Luo Heng, et al. Mechanism of fracture grouting for fractured rock based on Hoek-Brown failure criterion[J]. Journal of Central South University (Science and Technology), 2013, 44(7):2889-2896.
[13] Ni J C, Cheng W. Using fracture grouting to lift structures in clayey sand[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2010,11 (11): 879-886.
[14] Gothäll R,Stille H. Fracture dilation during grouting[J]. Tunnelling and Underground Space Technology, 2009, 24(3):126-135.
[15] 李世愚,和泰名,尹祥础,等.岩石断裂力学导论[M]. 合肥:中国科学技术大学出版社,2010.
[16] 郑卓,李术才,刘人太,等. 裂隙岩体注浆中的浆液-岩体耦合效应分析[J].岩石力学与工程学报,2015,34(2):4054-4062.
Zheng Zhuo,Li Shu-cai,Liu Ren-tai,et al. Analysis of coupling effect between grout and rock mass during jointed rock grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):4054-4062.
[17] 谢定义.非饱和土力学[M]. 北京:高等教育出版社,2015.
[18] 匡震邦,马法尚.裂纹端部场[M]. 西安:西安交通大学出版社,2002.
[19] 沈珠江. 岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,2003,25(3):253-257.
Shen Zhu-jiang. Breakage mechanics for geological materials: an ideal brittle-elasto-plastic model[J].Rock and Soil Mechanics, 2003, 25(3): 253-257.
[20] Sun Chang-zheng, Zhang Qi, Zhao Tong-feng, et al. Experimental study on the stress-temperature curve of the super high early strength grouting material at elevated temperature[J]. Applied Mechanics and Materials, 2014, 638-640:1521-1525.
[21] 程永春,姜屏,谭国金,等. 基于位移监测信息的土质边坡稳定性实时评判[J]. 吉林大学学报:工学版,2012,42(6):1487-1490.
Cheng Yong-chun, Jiang Ping, Tan Guo-jin, et al. Real-time evaluation of soil slope stability based on the information of displacement monitor[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(6):1487-1490.
[22] 寇剑锋,徐绯,郭家平,等. 黏聚力模型破坏准则及其参数选取[J]. 机械强度,2011,33(5):714-718.
Kou Jian-feng,Xu Fei,Guo Jia-ping,et al. Damage laws of cohesive zone model and selection of the parameters[J]. Journal of Mechanical Strength,2011,33(5):714-718.
[23] 王起才,张戎令. 劈裂注浆浆液走势与不同压力下土体位移试验研究[J].铁道学报,2011,33(12):107-111.
Wang Qi-cai, Zhang Rong-ling. Experimental research on the trend of slurry about fracturing grouting and soil displacement in different pressure[J].Journal of the China Railway Society, 2011, 33(12):107-111.
[24] 孙锋,张顶立,陈铁林,等. 土体劈裂注浆过程的细观模拟研究[J].岩土工程学报,2010,32(3):474-480.
Sun Feng, Zhang Ding-li, Chen Tie-lin,et al. Meso-mechanical simulation of fracture grouting in soil[J].Rock and Soil Mechanics, 2010, 32(3):474-480.
[25] 周健,张刚,孔戈. 渗流的颗粒流细观模拟[J].水力学报,2006,37(1):28-32.
Zhou Jian, Zhang Gang, Kong Ge. Meso-mechanics simulation of seepage with particle flow code[J]. Journal of Hydraulic Engineering, 2006, 37(3):28-32.
[1] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[2] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[3] ZHENG Yi-feng, MAO Jian, LIANG Shi-zhong, ZHENG Chuan-feng. Negative skin friction of pile foundation considering soil consolidation in high fill site [J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
[4] GUO Nan, ZHANG Ping-yang, ZUO Yu, ZUO Hong-liang. Bending performance of glue-lumber beam reinforced by bamboo plyboard [J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[5] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[6] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[7] GUO Xue-dong, MA Li-jun, ZHANG Yun-long. Analytical solution of the double joint layer composite beam with shear-slip under vertical concentrated load [J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[8] HOU Zhong-ming, WANG Yuan-qing, XIA He, ZHANG Tian-shen. Simply-supported steel-concrete composite beams under moving load [J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[9] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[10] WANG Chun-gang, ZHANG Zhuang-nan, ZHAO Da-qian, CAO Yu-fei. Experimental investigation of Σ-section channel steel with complex edge stiffeners and web holes under axial compression [J]. 吉林大学学报(工学版), 2015, 45(3): 788-796.
[11] LI Hai-feng,GUO Xiao-nong,LUO Yong-feng,GAO Xuan-neng. Collapse resistance behavior of Ferris wheel with stay cables [J]. 吉林大学学报(工学版), 2015, 45(2): 406-413.
[12] GUO Jun-ping, DENG Zong-cai, LU Hai-bo, LIN Jin-song. Experiment on shear behavior of reinforced concrete beams strengthened with prestressed high strength steel wire mesh [J]. 吉林大学学报(工学版), 2014, 44(4): 968-977.
[13] WANG Jia-chun, YAN Pei-yu. Probabilistic analysis of rebar rust in concrete under marine environment [J]. 吉林大学学报(工学版), 2014, 44(2): 352-357.
[14] JIANG Feng-guo, ZHAO Jing-lu. Reliability analysis of reinforced concrete member under fire load [J]. 吉林大学学报(工学版), 2013, 43(06): 1500-1503.
[15] ZHANG Da-shan, DONG Yu-li, WU Ya-ping. Calculation of tensile membrane effect of one-way concrete slabs [J]. 吉林大学学报(工学版), 2013, 43(05): 1253-1257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .