Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 29-35.doi: 10.13229/j.cnki.jdxbgxb20181027

Previous Articles     Next Articles

Multi⁃objective crashworthiness optimization design of concave triangles cell structure with negative Poisson′s ratio

Fang-wu MA1,2(),Hong-yu LIANG1,2,Ying ZHAO1,Meng YANG1,Yong-feng PU1   

  1. 1. State Key Laboratory of Automotive Simulation and Control,Jilin University, Changchun 130022,China
    2. Qingdao Automobile Research Institute, Jilin University,Qingdao 266000,China
  • Received:2018-09-06 Online:2020-01-01 Published:2020-02-06

Abstract:

To design vehicle collision energy-absorbing structures with excellent crashworthiness, the concave triangle cell structure with negative Poisson's ratio was studied. The axial impact finite element model of the structure was established by explicit dynamic finite element software LS-DYNA. Combined with the optimal Latin hypercube design method, the polynomial surrogate model of the peak crush force (PCF) and the specific energy absorption (SEA) for horizontal size and thickness of the cell wall were constructed, respectively. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was adopted to perform the multi-objective optimization design, and a compromise solution was obtained based on the fitness function C. The results show that the wall thickness has more obvious effect on crashworthiness of the energy-absorbing structure than horizontal cell wall size. The PCF can be effectively reduced and SEA can be improved by reasonable matching wall thickness and horizontal cell wall size.

Key words: vehicle engineering, collision energy absorption, negative Poisson′s ratio, axial impact, multi-objective optimization

CLC Number: 

  • U465.9

Fig.1

Concave triangles cell structure with negative Poisson′s ratio"

Fig.2

Schematic diagram of model and under in?plane impact"

Fig.3

Energy curve of concave triangles material with negative Poisson′s ratio"

Fig.4

Nominal stress?strain curve of cellular material"

Fig.5

Deformation modes of concave triangles material with negative Poisson′s ratio"

Fig.6

Energy absorption curve of different horizontal short wall height h values"

Fig.7

Sample point construction distribution based on optimal Latin hypercube"

Fig.8

9 sets of sample points and models"

Table 1

Target response value of sampling point"

样本点 相对密度Δρ PCF/kN SEA/(kJ?kg–1
(3,1.5) 0.163 3 2.844 71 3.516
(4,2.25) 0.230 2 5.553 31 7.095
(5,3) 0.287 3 8.470 96 10.626
(6,1.25) 0.142 0 2.670 49 3.418
(7,2) 0.209 6 5.931 79 7.115
(8,2.75) 0.267 3 9.053 34 10.451
(9,1) 0.122 5 3.599 93 2.455
(10,1.75) 0.190 7 5.387 62 4.072
(11,2.5) 0.248 2 10.4531 8.650

Fig.9

Response surface for peak compressions force"

Fig.10

Response surface for special energy absorption"

Fig.11

Pareto front of concave triangles material with negative Poisson′s ratio"

Table 2

Optimization results"

模 型 a/mm b/mm PCF/kN SEA/(kJ?kg–1
初始模型 8.0 2.750 9.053 3 9.912
优化模型 5.4 2.845 8.151 7 10.233
验证模型 5.4 2.845 8.152 0 10.363
1 Zhao Y , Ma F , Yang L , et al . Study on engine hood with negative poisson's ratio architected composites based on pedestrian protection[J].SAE International Journal of Engines, 2017, 10(2): 391-404.
2 Zhang D , Fei Q , Zhang P . In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells[J]. Thin-walled Structures, 2017, 117: 199-210.
3 崔世堂, 王波, 张科 . 负泊松比蜂窝面内动态压缩行为与吸能特性研究[J]. 应用力学学报, 2017, 34(5): 919-924.
Cui Shi-tang , Wang Bo , Zhang Ke . Mechanical behavior and energy absorption of honeycomb with negative Poisson′s ratio under in-plane dynamic compression[J].Chinese Journal of Applied Mechanics, 2017, 34(5): 919-924
4 Liu W , Wang N , Luo T , et al . In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100: 84-91.
5 卢子兴, 李康 . 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21): 16-22, 39.
Lu Zi-xing , Li Kang . In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock,2017, 36(21): 16-22, 39
6 樊喜刚, 尹西岳 . 梯度蜂窝面外动态压缩力学行为与吸能特性研究[J]. 固体力学学报, 2015, 36(2): 114-122.
Fan Xi-gang , Yin Xi-yue . Mechanical behavior and energy absorption of graded honeycomb materials under out-of-plane dynamic compression[J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 114-122.
7 Wang Z , Lu Z , Yao S , et al . Deformation mode evolutional mechanism of honeycomb structure when undergoing a shallow inclined load[J]. Composite Structures, 2016, 147: 211-219.
8 Gao D , Zhang C . Theoretical and numerical investigation on in-plane impact performance of chiral honeycomb core structure[J]. Journal of Structural Integrity and Maintenance, 2018, 3(2): 95-105.
9 韩会龙, 张新春 . 星形节点周期性蜂窝结构的面内动力学响应特性研究[J]. 振动与冲击, 2017, 36(23): 223-231.
Han Hui-long , Zhang Xin-chun . In-plane dynamic impact response characteristics of periodic 4-pointstar-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23): 223-231.
10 邓小林, 刘旺玉 . 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103-109.
Deng Xiao-lin , Liu Wang-yu . In-plane impact dynamics analysis of sinusoidal honeycomb structure with negative poisson's ratio[J]. Journal of Vibration and Shock,2017, 36(13): 103-109.
11 王登峰, 张帅, 汪勇 . 基于疲劳和13°冲击性能的组装式车轮优化设计[J]. 吉林大学学报:工学版, 2018,48(1): 44-56.
Wang Deng-feng , Zhang Shuai , Wang Yong . Optimization design of assembled wheel based on performance of fatigue and 13° impact[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(1): 44-56.
12 宋康, 陈潇凯, 林逸 . 汽车行驶动力学性能的多目标优化[J]. 吉林大学学报:工学版, 2015, 45(2): 352-357.
Song Kang , Chen Xiao-kai , Lin Yi . Multi-objective optimization of vehicle ride dynamic behaviors[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(2): 352-357.
13 胡云峰, 王长勇, 于树友 . 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报:工学版, 2018, 48(1): 236-244.
Hu Yun-feng , Wang Chang-yong , Yu Shu-you . Structure parameters optimization of common rail system for gasoline direct injection engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(1): 236-244.
14 Fazilati J , Alisadeghi M . Multiobjective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact[J]. Thin-Walled Structures, 2016, 107: 197-206.
15 Zhou G , Ma Z D , Li G , et al . Design optimization of a novel NPR crash box based on multi-objective genetic algorithm[J]. Structural & Multidisciplinary Optimization, 2016, 54(3): 673-684.
16 Santosa S P , Wierzbicki T , Hanssenb A G , et al . Experimental and numerical studies of foam-filled sections[J]. International Journal of Impact Engineering, 2000, 24(5): 509-534.
17 Ruan D , Lu G , Wang B , et al . In-plane dynamic crushing of honeycombs―a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182.
18 文桂林, 孔祥正, 尹汉锋 . 泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J]. 振动与冲击, 2015, 34(5): 115-121.
Wen Gui-lin , Kong Xiang-zheng , Yin Han-feng . Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures[J]. Journal of Vibration and Shock, 2015, 34(5): 115-121.
19 Zhang P , Wang Z , Zhao L . Dynamic crushing behavior of open-cell aluminum foam with negative Poisson’s ratio[J]. Applied Physics A, 2017, 123(5): No.321.
[1] Kong-hui GUO,Shi-qing HUANG,Hai-dong WU. In⁃plane dynamic tire model for high⁃frequency excitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 19-28.
[2] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[3] Fang-wu MA,Li-wei NI,Liang WU,Jia-hong NIE,Guang-jian XU. Position and attitude closed loop control of wheelleggedall terrain mobile robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1745-1755.
[4] Li-qiang JIN, Duan-yang TIAN, Hao TIAN, Meng-meng LIU. Brake force assistant technology for vehicle electronicstability control system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1764-1776.
[5] Yang WANG,Zhan⁃shuai SONG,Kong⁃hui GUO,Ye ZHUANG. Measurement of inertial parameters of rotating inertia rig [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1795-1801.
[6] Wei-min ZHUANG,Yang LIU,Peng-yue WANG,Hong-da SHI,Ji-shuan XU. Simulation on peeling failure of self⁃piercing riveted joints insteel and aluminum alloy dissimilar sheets [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1826-1835.
[7] Jie LI, Wen-cui GUO, Qi ZHAO, Sheng-feng GU. Road roughness identification based on vehicle responses [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1810-1817.
[8] Bai-chao CHEN,Meng ZOU,Zhao-long DANG,Han HUANG,Yang JIA,Rui-yang SHI,Jian-qiao LI. Experiment on pressure⁃sinkage for mesh wheels of CE⁃3lunar rover on lunar regolith [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
[9] Fu-chun JIA,Xian-jie MENG,Yu-long LEI. Optimal design of two degrees of freedom dynamic vibration absorber based on multi-objective genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1969-1976.
[10] Ren HE,Kun TU. Electromagnetic brake with changed⁃temperature air gap width [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1777-1785.
[11] Qiao-bin LIU,Wen-ku SHI,Zhi-yong CHEN,Lian-meng LUO,Zhi-yong SU,Kai-jun HUANG. Parameter estimation of mixed reliability model based on kernel density optimal grouping and gravity search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1818-1825.
[12] Xin GUAN,Hao JIN,Chun-guang DUAN,Ping-ping LU. Estimation of lateral slope of vehicle driving road [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1802-1809.
[13] Ting YAN,Lin YANG,Liang CHEN. AMT shift actuator adaptive intelligent control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1441-1450.
[14] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[15] Bo ZHANG,Jian-wei ZHANG,Kong-hui GUO,Hai-tao DING,Hong-qing CHU. Current control of permanent magnet synchronous motor for road feeling simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1405-1413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!