Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 39-48.doi: 10.13229/j.cnki.jdxbgxb20190938

Previous Articles     Next Articles

Analysis on particle collision dynamics parameters in diesel exhaust stage

Zhong WANG1(),You LI1,Mei-juan ZHANG1,2,Shuai LIU1,Rui-na LI1,Huai-bei ZHAO1   

  1. 1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
    2.School of Automotive and Traffic,Wuxi Institute of Technology,Wuxi 214121,China
  • Received:2019-10-10 Online:2021-01-01 Published:2021-01-20

Abstract:

In order to explore the dynamic characteristics of particle collision in diesel engine exhaust phase, a simulation model of particle collision was established by coupling discrete element dynamics software EDEM with Fluent based on similarity theory. The collision process of diesel engine with different exhaust pressure difference and flow velocity were simulated. The effects of collision dynamics parameters such as angular velocity, rotational turbulent kinetic energy, torque and collision scraping force on the diesel engine during collision were analyzed. The results show that the normal force and tangential force increase by 1.5 and 1.7 times respectively when the velocity of flow is constant, the particle size is the same and the exhaust pressure difference increases from 0.188 MPa to 0.268 MPa, and the average rotational turbulent kinetic energy increases from 2.26×10-9 J to 3.52×10-9 J. When the pressure difference is constant, the particle size is the same and the gas flow rate increases from 5.65 m/s to 6.78 m/s, the normal force and tangential force increase by 50.5% and 45.5% respectively, and the average angular velocity of particles increases from 7.87×105 rad/s to 10.85×105 rad/s. The research results can provide a basis for improving diesel particulate filter (DPF) capture efficiency.

Key words: power machinery engineering, diesel engine, exhaust stage, particle, collision, dynamics

CLC Number: 

  • TK421

Fig.1

Simplified view of 186FA diesel engine inlet"

Table 1

Physical parameters of prototype and model particle"

颗粒粒径/nm质量密度/(kg·m-3)温度/K相似指标/R
原型100120010000.83~0.90
模型1.0×105310683
1.5×105232625
2.0×105165565
2.5×105101503

Fig.2

186FA diesel engine test bench"

Fig.3

Scanning electron microscopy and SEM of particle"

Fig.4

Cylinder pressure curve of 186FA diesel engine under different loads"

Table 2

Piston up speed of each characteristic angle in exhaust phase"

转速/

(r?min-1)

各特征转角活塞上行速度/(m?s-1)
180 °CA270 °CA360 °CA
3000011.300
3300012.440
3600013.560

Fig.5

Iteration curve"

Fig.6

Changes of particle angular velocity, rotating turbulent kinetic energy and torque with pressure difference"

Fig.7

Curve of particle scratch force with pressure difference"

Fig.8

Changes of particle angular velocity, rotating turbulent kinetic energy and torque with different flow rate"

Fig.9

Curve of particle scratch force with flow rate"

Fig.10

Changes of particle angular velocity, rotating turbulent kinetic energy and torque with particle size"

Fig.11

Curve of particle scratch force with particle size"

1 宁智, 资新运, 王宪成. 脉动排气对柴油机微粒凝并作用的研究[J]. 燃烧科学与技术, 2002, 8(6): 503-506.
Ning Zhi, Zi Xin-yun, Wang Xian-cheng. Study on the effect of fluctuant exhaust on the aggregation of diesel exhaust particulate[J]. Journal of Combustion Science and Technology, 2002, 8(6): 503-506.
2 王玉明, 林建忠. Brown 凝并中两个不同直径纳米颗粒的碰撞系数[J]. 应用数学和力学, 2011, 32(8): 956-963.
Wang Yu-ming, Lin Jian-zhong. Collision efficiency of two nanoparticles with different diameters in the brownian coagulation[J]. Applied Mathematics and Mechanics, 2011, 32(8): 956-963.
3 杨芳玲, 王忠, 赵洋, 等. 柴油机等径颗粒平面碰撞过程凝并特征[J]. 科学通报, 2016, 61(12): 1379-1385.
Yang Fang-ling, Wang Zhong, Zhao Yang, et al. Coalescence features of planar collision between particulate matters of same diameter from diesel engine[J]. Chinese Science Bulletin, 2016, 61(12): 1379-1385.
4 Lennart F, Sergiy A, Stefan H, et al. Collision dynamics in fluidized bed granulators: a DEM-CFD study[J]. Chemical Engineering Science, 2013, 86: 108-123.
5 Liu W M, Xu J, Liu X D. Numerical study on collision characteristics for non-spherical particles in venturi powder ejector[J]. Vacuum, 2016, 131: 285-292.
6 杨芳玲. 柴油机缸内颗粒碰撞与凝并过程研究[D]. 镇江:江苏大学汽车与交通工程学院, 2017.
Yang Fang-ling. Study on the collision and coagulation process of particles in diesel engine[D]. Zhenjiang: School of Automotive and Traffic Engineering, Jiangsu University, 2017.
7 赵怀北. 柴油机排气颗粒碰撞过程与团聚特征研究[D]. 镇江:江苏大学能源与动力工程学院,2018.
Zhao Huai-bei. Study on the collision process and agglomeration characteristics of particles in diesel engine[D]. Zhenjiang: School of Energy and Power Engineering, Jiangsu University, 2018.
8 Matsusaka S, Theerachaisupakij W, Yoshida H, et al. Deposition layers formed by a turbulent aerosol flow of micron and sub-micron particles[J]. Powder Technology, 2001, 118(1/2): 130-135.
9 周美立. 汽车系统单元化集成设计中相似性与复杂性[J]. 汽车工程, 2004, 26(6): 735-738.
Zhou Mei-li. Similarity and complexity in unitization integrated design for vehicle system[J]. Automotive Engineering, 2004, 26(6): 735-738.
10 刘宏新, 孟永超, 李彦龙, 等. 沼肥采运车储罐动力学数值模拟与相似模型试验[J]. 农业工程学报, 2015, 31(17): 42-49.
Liu Hong-xin, Meng Yong-chao, Li Yan-long, et al. Numerical simulation of dynamic and similarity model test of tank in biogas fertilizer transport truck[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 42-49.
11 Batchelor G K. The application of the similarity theory of turbulence to atmospheric diffusion[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 76(328): 133-146.
12 李瑞霞,柳朝晖,贺铸,等. 各向同性湍流内颗粒碰撞率的直接模拟研究[J]. 力学学报,2006,38(1):25-32.
Li Rui-xia,Liu Zhao-hui,He Zhu,et al. Direct numerical simulation of inertial particle collisions in isotropic turbulence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 25-32.
13 Wang L, Chen S, Xie H. Numerical simulation of the growth of nanoparticles in a flame CVD process[J]. Chinese Particuology, 2004, 2(5): 215-221.
14 Seinfeld J H, Pandis S N, Noone K. Atmospheric chemistry and physics: from air pollution to climate change[J]. Environment Science and Policy for Sustainable Development, 1998, 40(7): 26-29.
15 韩健, 东明, 李素芬, 等. 飞灰颗粒与平板表面撞击过程的实验研究[J]. 化工学报, 2013, 64(9): 3161-3167.
Han Jian, Dong Ming, Li Su-fen, et al. Experimental research on fly ash particles impacting planar surface[J]. CIESC Journal, 2013, 64(9): 3161-3167.
16 周美立. 相似性科学[M]. 北京: 科学出版社, 2004.
17 王忠, 孙波, 赵洋, 等. 小型非道路柴油机排气管内颗粒的粒径分布与氧化特性[J]. 农业工程学报, 2016, 32(10): 41-46.
Wang Zhong, Sun Bo, Zhao Yang, et al. Characteristics of particle coagulation and oxidation in exhaust pipe of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 41-46.
18 Streets D G, Gupta S, Waldhoff S T, et al. Black carbon emissions in China: Asia[J]. Atmospheric Environment, 2001, 35(25): 4281-4296.
19 Huang Y, Lee C, Choi Y, et al. Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs[J]. Journal of Mechanical Science & Technology, 2011, 25(11): 2853-2857.
20 Marshall J S. Viscous damping force during head-on collision of two spherical particles[J]. Physics of Fluids, 2011, 23(1): 5382-5393.
21 黄立沛. 基于离散元素法的动态配料模型预测控制算法研究[D]. 重庆:重庆大学自动化学院, 2017.
Huang Li-pei. Research on model predictive control algorithm of dynamic batching process based on discrete element method[D]. Chongqing:School of Automation, Chongqing University, 2017.
22 Kittelson D B. Engines and nanoparticles: a review[J]. Journal of Aerosol Science, 1998, 29(5/6): 575-588.
23 Park D, Choi N K, Lee S G, et al. Real-time measurement of the size distribution of diesel exhaust particles using a portable 4-stage electrical low pressure impactor[J]. Particle & Particle Systems Characterization, 2010, 26(4): 179-186.
24 Cashdollar K L, Zlochower I A. Explosion temperatures and pressures of metals and other elemental dust clouds[J]. Journal of Loss Prevention in the Process Industries, 2006, 20(4-6): 337-348.
25 Hauert F, Vogl A, Radandt S. Dust cloud characterization and its influence on the pressure-time-history in silos[J]. Process Safety Progress, 1996, 15(3): 178-184.
26 Stessel R I, Peirce J J. Pulsed-flow air classification for waste-to-energy[J]. Journal of Energy Engineering, 1983, 109(2): 60-73.
27 Tukmakov A L. Numerical model of the electro-gas-dynamics of a gas-particle system based on the equations of motion of a two-velocity two-temperature gas-particle mixture[J]. Journal of Applied Mechanics & Technical Physics, 2015, 56(4): 636-643.
28 Tong Z, Zhong W, Yu A, et al. CFD-DEM investigation of the effect of agglomerate-agglomerate collision on dry powder aerosolisation[J]. Journal of Aerosol Science, 2016, 92(10): 109-121.
29 李新令, 黄震, 王嘉松, 等. 柴油机排气颗粒浓度和粒径分布特征试验研究[J]. 内燃机学报, 2007, 25(2): 113-117.
Li Xin-ling, Huang Zhen, Wang Jia-song, et al. Investigation on concentrations and size distribution characteristic of particles from diesel engine[J]. Transactions of CSICE, 2007, 25(2): 113-117.
30 朴香兰, 王国强, 张占强, 等. 水平转弯颗粒流的离散元模拟[J]. 吉林大学学报:工学版, 2010, 40(1): 98-102.
Xiang-lan Piao, Wang Guo-qiang, Zhang Zhan-qiang, et al. Discrete element method simulation of granular flow on horizontalturn[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(1): 98-102.
31 王晓燕, 李芳, 葛蕴珊, 等. 甲醇柴油与生物柴油微粒排放粒径分布特[J]. 农业机械学报, 2009, 40(8): 7-12.
Wang Xiao-yan, Li Fang, Ge Yun-shan, et al. Particle size distribution of particulate matter emission from the diesel engine burning methanol-diesel fuel and biodiesel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 7-12.
32 黄军. 扭曲管内流态化粒子对壁面的磨蚀及碰撞动力学研究[D]. 湖南:湘潭大学机械工程学院, 2015.
Huang Jun. Study on the wall erosion and collision dynamics of fluidized particles in twisted tube[D]. Hunan:School of Mechanical Engineering, Xiangtan University, 2015.
33 赵怀北, 王忠, 刘帅, 等. 柴油机排气颗粒的力学特征与形貌分析[J]. 科学通报, 2017, 62(30): 3498-3505.
Zhao Huai-bei, Wang Zhong, Liu Shuai, et al. Analysis on the morphology and mechanical characteristics of agglomerated particles emitted from the diesel exhaust process[J]. China Science Bulletin, 2017, 62(30): 3498-3505.
[1] Fang-wu MA,Hong-yu LIANG,Qiang WANG,Yong-feng PU. In-plane dynamic crushing of dual-material structure with negative Poisson′s ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 114-121.
[2] Chang SU,Ying HAN,Ying-chao ZHANG,Zhen-hua MIAO. Influence performance with wheel spoke design parameters of vehicle aerodynamic [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 107-113.
[3] Zhi-gang YANG,Ya-jun FAN,Chao XIA,Shi-jun CHU,Xi-zhuang SHAN. Drag reduction of a square⁃back Ahmed model based on bi⁃stable wake [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1635-1644.
[4] Wei LAN,Jiang LIU,Li XIN,Jing-xi LI,Xing-jun HU,Jing-yu WANG,Tao SANG. Influence of rearview mirror styling on water phase distribution on side windows [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1590-1599.
[5] Fang-wu MA,Li HAN,Liang WU,Jin-hang LI,Long-fan YANG. Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1608-1616.
[6] Chang-qing DU,Xi-liang CAO,Biao HE,Wei-qun REN. Parameters optimization of dual clutch transmission based on hybrid particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1556-1564.
[7] Xue-ping FAN,Guang QU,Yue-fei LIU. Bridge extreme stress prediction based on new data assimilation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 572-580.
[8] Jian WANG,Xin XU,Han GU,Duo-jun ZHANG,Sheng-ji LIU. Heating characteristics of DOC based on exhaust thermal management of diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 408-416.
[9] Xiang-jun YU,Yuan-hui HUAI,Xue-fei LI,De-wu WANG,An YU. Shoveling trajectory planning method for wheel loader based on kriging and particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 437-444.
[10] Shun-fu JIN,Xiu-chen QIE,Hai-xing WU,Zhan-qiang HUO. Clustered virtual machine allocation strategy in cloud computing based on new type of sleep-mode and performance optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 237-246.
[11] Fang-wu MA,Hong-yu LIANG,Ying ZHAO,Meng YANG,Yong-feng PU. Multi⁃objective crashworthiness optimization design of concave triangles cell structure with negative Poisson′s ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 29-35.
[12] Li XIN,Wei LAN,Jiang LIU,Qin-lin WAN,Peng GUO,Xing-jun HU,Yang XIAO. Simulation and control of pollution on automobile body surface during wading [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1786-1794.
[13] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[14] Chang-cheng LIU,Zhong-chang LIU,Jing TIAN,Yun XU,Ze-yu YANG. In⁃cylinder exergy destruction during combustion process ofheavy⁃duty turbocharged diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1911-1919.
[15] Qiao WANG,Wan-chen SUN,Liang GUO,Peng CHENG,Lu-yan FAN,Guo-liang LI. Effects of butanol/diesel blends on combustion and particulate emission characteristics of compression ignition engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1920-1928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!