Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (1): 195-203.doi: 10.13229/j.cnki.jdxbgxb20200876

Previous Articles    

LTE uplink interference analysis combined with denoising autoencoder and extreme learning machine

Hong-kui XU1,2(),Tong-tong JIANG1,Xin LI1,Bin-xiang JIANG1,3,Yong-lei WANG4   

  1. 1.School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China
    2.Shandong Key Laboratory of Intelligent Building Technology,Shandong Jianzhu University,Jinan 250101,China
    3.Juvenile Crime & Justice Research Center,China University of Political Science & Law,Beijing 100088,china
    4.AI Research Institute,Hunan ENHT Technology Co. ,Ltd. ,Qingdao 266000,China
  • Received:2020-11-18 Online:2022-01-01 Published:2022-01-14

Abstract:

Aiming at the problems of noise sensitivity and long training time in the uplink interference classification model of LTE (long Term Evolution) network, this article establishes a LTE network uplink interference analysis model combining stacked denoising autoencoder and extreme learning machine, using uplink interference raw data to unsupervised pre-training of SDA (Stacked denoising autoencoder) to extract high-level abstract features, and to provide initial parameters for the ELM (Extreme learning machine) classifier. The model takes advantage of ELM's fast convergence and SDA's noise suppression, and at the same time overcomes the problem of insufficient robustness caused by random assignment of ELM parameters. Experimental results show that this model improves the efficiency of LTE network uplink interference analysis, and at the same time has strong robustness.

Key words: long term evolution network uplink interference, denoising autoencoder, extreme learning machine, feature extraction

CLC Number: 

  • TP391

Fig.1

Extreme learning machine structure diagram"

Fig.2

Denoising autoencoder network structure"

Fig.3

SDAE-ELM network structure"

Fig.4

Data extraction flowchart"

Fig.5

Original MR data format"

Table 1

Statistical table of partial PRB uplink interference power"

小区ID

PRB0

/dBm

PRB1

/dBm

PRB2

/dBm

PRB3

/dBm

01-106.0-119.8-119.2-118.5
02-106.0-119.4-119.6-118.7
03-106.1-119.5-119.8-119.5
04-106.2-120.0-120.0-119.9
05-105.4-119.3-119.3-119.2
06-106.0-119.9-120.0-119.9
07-106.1-119.8-120.0-119.9
08-106.3-119.9-120.0-119.9

Fig.6

Visualization of 12 h uplink interference power data in a cell"

Table 2

Data set composition and distribution table"

干扰类型训练集样本测试集样本
互调干扰594201
阻塞干扰709191
外部干扰696204
无干扰696208

Table 3

Model parameter combination"

模型输入层特征层1特征层2ELM隐含层输出层
112256001002004
212256001003004
312256001004004
41225600502004
51225600503004
61225600504004

Fig.7

Performance analysis of different parameter combinations of SDAE-ELM model"

Table 4

SDAE and SDAE-ELM training time comparison"

模型SDAE/sSDAE?ELM/s
1187134
2188139
3194134
4192131
5192133
6191131

Fig.8

Variation of classification accuracy in noisy data sets"

Table 5

Comparison of classification accuracy of different algorithms in LTE network uplink interference data set"

加噪情况ELMSDAEELM?AESDAE?ELM
未添加噪声93.992.995.996.9
15%高斯白噪声90.990.193.996.5
1 王建,刘方森,赵昌盛. 基于MR数据TD-LTE上行干扰分析方法研究[J].电信技术,2017(1):63-65.
Wang Jian, Liu Fang-sen, Zhao Chang-sheng. Research on TD-LTE uplink interference analysis method based on MR data[J]. TelecommunicationsTechnology,2017(1):63-65.
2 翁文迪.TD-LTE系统间干扰检测与分类的研究及实现[D]. 北京:北京交通大学电气学院,2015.
Weng Wen-di. Study and implementation of detection and classification for the inter system Interference to TD-LTE[D]. Beijing: School of Electrical Engineering,Beijing Jiaotong University, 2015.
3 刘思.基于TD-LTE上行干扰数据的多维度干扰类型识别算法研究与验证[D].北京: 北京邮电大学信息与通信工程学院,2017.
Liu Si. Research and verification of multiple dimensions interference recognition algorithm based on TD-LTE upstream interference data[D].Beijing: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 2017
4 李颖. LTE网络上行干扰分析技术及应用[D].北京:北京邮电大学信息与通信工程学院,2017
Li Ying. Analysis and application of LTE network uplink interference[D]. Beijing: School of Information and Communication Engineering,Beijing University of Posts and Telecommunications, 2017
5 孙黎明. TD-LTE系统上行干扰排查方法研究[D].大连:大连理工大学信息与通信工程学院,2019.
Sun Li-ming, Research on uplink interference identification and avoiding methods of TD-LTE system[D]. Dalian: School of Information and Communication Engineering,Dalian University of Technology, 2019.
6 Huang Guang-bin,Zhu Qin-Yu,Siew Chee- kheong. Extreme learning machine theory and applications[J]. Neurocomputing,2006,70(1-3) :489-501.
7 Huang Zhi-yong, Yu Yuan-long, Gu Jason, et al. An efficient method for traffic sign recognition based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2016, 47(4):920-933.
8 Iosifidis A, Tefas A. Approximate kernel extreme learning machine for large scale data classification[J].Neurocomputing,2017,219(5):210-220.
9 Chen Zhi-cong, Wu Li-jun, Cheng Shu-ying, et al. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[J]. Applied Energy, 2017,204(15):912-931.
10 Gang Yin, Zhang Ying-tang, Li Zhi-ning, et al. Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure[J]. Neurocomputing, 2014, 128(27):224-231.
11 Lan Yuan, Hu Zong-jiang, Soh Yeng Chai, et al. An extreme learning machine approach for speaker recognition[J]. Neural Computing & Applications, 2013, 22(3/4):417-425.
12 Yan Xu, Dai Yuan-yu, Zhao Yang-dong, et al. Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems[J]. Neural Computing & Applications, 2013,22(18):501-508.
13 Duan Ming-xing, Li Ken-li, Li Keqin. An ensemble CNN2ELM for age estimation[J]. IEEE Transactions on Information Forensics and Security,2018,13 (3) : 758-772.
14 王晓丹, 来杰,李睿,等.多层去噪极限学习机[J].吉林大学学报:工学版,2020,50(3):1031-1039.
Wang Xiao-dan, Lai Jie, Li Rui, et al. Multi-layer denoising extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2020,50(3):1031-1039.
15 张卫东,路皓翔,甘博瑞,等.基于栈式自编码融合极限学习机的药品鉴别[J]. 计算机工程与设计,2019,40(2):545-549, 561.
Zhang Wei-dong, Lu Hao-xiang, Gan Bo-rui, et al. Drug identification based on stacked auto encoders fusing extreme learning machine[J]. Computer Engineering and Design,2019,40(2):545-549, 561.
16 Huang Guang-bin, Liang Nan-ying, Rong Hai-jun, et al. On-Line sequential extreme learning machine[C]∥The Fourth IASTED International Conference on Computational Intelligence, Calgary, Canada, 2005:62-67.
17 Huang Guang-bin, Song Shi-ji,Huang Gao,et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61:32-48.
18 Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders[C]∥Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 1096-1103.
[1] Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194.
[2] Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279.
[3] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[4] Xiao-long ZHU,Zhong XIE. Automatic construction of knowledge graph based on massive text data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1358-1363.
[5] Tao XU,Ke MA,Cai-hua LIU. Multi object pedestrian tracking based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 27-38.
[6] Bing-hai ZHOU,Zhao-xu HE. Dynamic material handling scheduling for mixed⁃model assembly lines based on line⁃integrated supermarkets [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1809-1817.
[7] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[8] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[9] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[10] YU Fan-hua, LIU Ren-yun, ZHANG Yi-min, ZHANG Xiao-li, SUN Qiu-cheng. Swarm intelligence algorithm of dynamic reliability-based robust optimization design of mechanic components [J]. 吉林大学学报(工学版), 2017, 47(6): 1903-1908.
[11] DONG Qiang, LIU Jing-hong, ZHOU Qian-fei. Improved SURF algorithm used in image mosaic [J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652.
[12] YIN Ming, ZHAN Yin-wei, PEI Hai-long. Co-sparse analysis operator learning for image fusion [J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[13] YU Fan-hua, LIU Ren-yun, ZHANG Yi-min, SUN Qiu-cheng, ZHANG Xiao-li. Intelligent algorithm for optimized dynamic reliability design of mechanic structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1269-1275.
[14] XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[15] LIU Hong,SUN Shuang-zi,WANG Qing-yuan,LI Yan-zhong. PSO based feature extraction method for analog circuit fault information [J]. 吉林大学学报(工学版), 2015, 45(2): 675-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!