Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 525-532.doi: 10.13229/j.cnki.jdxbgxb20200849

Previous Articles    

Quantitative metal magnetic memory classification model of weld grades based on particle swarm optimization fuzzy C⁃means

Hai-yan XING(),Chao LIU,Cheng XU,Yu-huan CHEN,Song-hong-ze WANG   

  1. School of Mechanical Science and Engineering,Northeast Petroleum University,Daqing 163318,China
  • Received:2020-11-05 Online:2022-03-01 Published:2022-03-08

Abstract:

Aiming at the difficulty of grade quantitative classification caused by the fuzziness of metal magnetic memory (MMM) characteristic parameters among different weld grades, a quantitative classification model based on particle swarm optimization fuzzy c-means clustering (FCM) is proposed. The fatigue tensile test was carried out on the Q235 steel weld specimen prefabricated by an incomplete penetration defect. The MMM signal was detected by the TSC-5M-32 MMM instrument. The three-dimensional composite characteristic parameter vector was extracted from the experimental data. At the same time, the MMM test results were compared with the X-ray test results to provide a reference. Considering that the initial clustering center of the FCM algorithm is determined randomly, it is easy to fall into the local optimum, and the artificial setting of weight m leads to low clustering accuracy. Particle swarm optimization (PSO) algorithm with global search and high efficiency is introduced to optimize the initial clustering center and weight m of the FCM algorithm. The modified reciprocal formula of the FCM objective function is used as the fitness function of the PSO algorithm, and the sample individuals and weight m are encoded as particles. The speed and position of the particle are updated to obtain the global optimal cluster center, and m is converged to the optimal solution. The quantitative MMM classification model based on the FCM clustering center and m optimized by PSO is established for different weld defect grades. The results show that the classification accuracy of the model is 97.93%, which provides a new idea for the quantitative identification of weld defect levels and evaluation of equipment safety.

Key words: metal magnetic memory, weld defect grades, fuzzy C-means, particle swarm optimization, cluster center

CLC Number: 

  • TH13

Fig.1

Specimen size and testing lines"

Fig.2

X-ray testing photos"

Fig.3

MMM distribution of welded specimensfor different damage grades"

Table 1

Training sample"

序号KrMΔHp输出标签
x12.1363.55816.381
x24.2794.91622.621
x34.8754.86116.531
x47.2586.46525.161
x52.8892.88924.291
x62.4802.76526.281
x77.1566.82123.741
x86.8213.09326.152
x93.4323.50527.152
x103.1473.23631.072
x114.4173.84328.392
x124.2833.86536.923
x133.6043.20837.133
x145.2892.61834.133
x154.5004.04140.483
x168.9094.15640.623
x174.5593.80840.253
x1817.1864.86070.624
x195.7504.04749.384
x2023.0896.64887.464

Fig.4

Objective function iteration diagram of particle swarm optimization FCM algorithm"

Table 2

Test samples"

序号KrMΔHp输出标签模型等级实际等级
x14.6083.01434.251Ⅰ级Ⅰ级
x27.9744.40741.021Ⅰ级Ⅰ级
x36.0003.79742.131Ⅰ级Ⅰ级
x45.4853.44344.541Ⅰ级Ⅰ级
x54.5672.89845.081Ⅰ级Ⅰ级
x65.7023.58145.831Ⅰ级Ⅰ级
x74.0092.90545.991Ⅰ级Ⅰ级
x87.8023.93646.041Ⅰ级Ⅰ级
x96.1293.52651.781Ⅰ级Ⅰ级
x105.3703.69246.901Ⅰ级Ⅰ级
x116.3085.03652.781Ⅰ级Ⅱ级
x1233.13711.58357.412Ⅱ级Ⅱ级
x136.9093.44570.112Ⅱ级Ⅱ级
x1427.3879.88059.892Ⅱ级Ⅱ级
x1539.91012.93273.612Ⅱ级Ⅲ级
x168.2404.10387.713Ⅲ级Ⅲ级
x1736.25410.018103.803Ⅲ级Ⅲ级
x1838.33311.500107.973Ⅲ级Ⅲ级
x1965.44511.932182.114Ⅳ级Ⅳ级
x2048.6249.500209.604Ⅳ级Ⅳ级

Fig.5

Two-dimensional schematic diagram ofdefect classification"

1 , 焊缝无损检测·超声检测技术、检测等级和评定 [S].
2 Dubov A A. Study of metal properties using metal magnetic memory method[C]∥7th European Conference on Non-destructive Testing, Copenhagen,1997:920-927.
3 Doubov A A. Diagnostics of metal items and equipment by means of metal magnetic memory [C]∥Proceedings of the CHSNDT 7th Conference on NDT and International Research Symposium, Shantou, China, 1999: 287-293.
4 Dubov A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1998, 39(9): 35-39.
5 邸新杰, 李午申, 白世武, 等. 焊接裂纹的金属磁记忆定量化评价研究[J]. 材料工程, 2006,50(7): 56-60.
Di Xin-jie, Li Wu-shen, Bai Shi-wu, et al. Quantitative evaluation study on metal magnetic memory of welding cracks[J]. Journal of Materials Engineering, 2006, 50(7): 56-60.
6 张军, 王彪, 计秉玉. 基于小波变换的套管金属磁记忆检测信号处理[J]. 石油学报, 2006, 27(2): 137-140.
Zhang Jun, Wang Biao, Ji Bing-yu. Signal processingfor metal magnetic memory testing of borehole casing based on wavelet transform[J]. Acta Petrolei Sinica,2006, 27(2): 137-140.
7 张军, 王彪, 肖余之. 磁记忆与小波变换相结合的井下套管应力集中早期诊断方法[J]. 吉林大学学报: 工学版, 2007, 37(2): 469-473.
Zhang Jun, Wang Biao, Xiao Yu-zhi. Early diagnosis for the stress concentration zone of borehole casing pipe by metal magnetic memory and wavelet transform[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(2): 469-473.
8 刘昌奎, 陶春虎, 陈星, 等. 金属磁记忆检测技术定量评估构件疲劳损伤研究[J]. 材料工程, 2009, 56(8): 33-37.
Liu Chang-kui, Tao Chun-hu, Chen Xing, et al. Research on quantitative assessment of fatigue damage bymetal magnetic memory methods[J]. Journal of Materials Engineering, 2009, 56(8): 33-37.
9 张伟, 黄卫民. 基于种群分区的多策略自适应多目标粒子群算法[J/OL]. [2020-09-30].
10 高云龙, 王志豪, 潘金艳, 等. 基于自适应松弛的鲁棒模糊C均值聚类算法[J]. 电子与信息学报, 2020, 42(7):1774-1781.
Gao Yun-long, Wang Zhi-hao, Pan Jin-yan, et al. Robust fuzzy C-means based on adaptive relaxation[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1774-1781.
11 周世波, 徐维祥, 徐良坤. 融合密度峰值和空间邻域信息的FCM聚类算法[J]. 仪器仪表学报, 2019, 40(4):137-144.
Zhou Shi-bo, Xu Wei-xiang, Xu Liang-kun. ImprovedFCM algorithm based on density peaks and spatial neighborhood information[J]. Chinese Journal of Scientific Instrumen, 2019, 40(4): 137-144.
12 周世波, 唐基宏, 熊振南. 基于优化模糊C均值算法的锚泊船聚集特性[J]. 交通运输工程学报, 2019, 19(6): 137-148.
Zhou Shi-bo, Tang Ji-hong, Xiong Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148.
13 贾亚飞, 朱永利, 高佳程, 等. 基于样本加权FCM聚类的未知类别局部放电信号识别[J]. 电力自动化设备, 2018, 38(12): 107-112.
Jia Ya-fei, Zhu Yong-li, Gao Jia-cheng, et al. Recognition of unknown partial discharge signals based on sample-weighted FCM clustering[J]. Electric Power Automation Equipment, 2018, 38(12): 107-112.
14 易方. 基于ANSYS的管道磁记忆检测技术仿真研究[J].化工机械, 2014, 41(2): 207-210.
Yi Fang, Simulation research of pipeline mmm testing technology based on ANSYS[J]. Chemical Engineering & Machinery, 2014, 41(2): 207-210.
15 刘书俊, 蒋明, 张伟明, 等. 基于BP神经网络的磁记忆检测管道缺陷研究[J]. 化工自动化及仪表, 2016, 43(3): 240-243.
Liu Shu-jun, Jiang Ming, Zhang Wei-ming, et al. Study on pipeline defect inspection with magnetic memory testing technology based on bp neural network[J]. Control and Instruments in Chemical Industry, 2016, 43(3): 240-243.
16 邢海燕, 葛桦, 李思岐, 等. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报: 工学版, 2017, 47(6): 1854-1860.
Xing Hai-yan, Ge Hua, Li Si-qi, et al. Hidden defect metal magnetic memory identification for welded joints based on fuzzy membership and maximum likelihood estimation. [J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1854-1860.
17 邢海燕, 喻正帅, 李雪峰, 等. 基于模糊c均值聚类算法的焊缝缺陷等级磁记忆定量识别[J]. 压力容器, 2018, 35(6):57-63.
Xing Hai-yan, Yu Zheng-shuai, Li Xue-feng, et al. Quantitative metal magnetic memory identification of weld defect levels based on fuzzy c-means clusering algorithmt[J]. Pressure Vessel Technology, 2018, 35(6): 57-63.
18 . 承压设备无损检测 [S].
19 Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Boston, MA:Springer, 1981.
[1] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[2] Chang-qing DU,Xi-liang CAO,Biao HE,Wei-qun REN. Parameters optimization of dual clutch transmission based on hybrid particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1556-1564.
[3] Fang-wu MA,Li HAN,Liang WU,Jin-hang LI,Long-fan YANG. Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1608-1616.
[4] Xiang-jun YU,Yuan-hui HUAI,Xue-fei LI,De-wu WANG,An YU. Shoveling trajectory planning method for wheel loader based on kriging and particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 437-444.
[5] Shun-fu JIN,Xiu-chen QIE,Hai-xing WU,Zhan-qiang HUO. Clustered virtual machine allocation strategy in cloud computing based on new type of sleep-mode and performance optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 237-246.
[6] Hong⁃zhi WANG,Fang⁃da JIANG,Ming⁃yue ZHOU. Power allocation of cognitive radio system based on genetic particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1363-1368.
[7] Yuan-ning LIU,Shuai LIU,Xiao-dong ZHU,Guang HUO,Tong DING,Kuo ZHANG,Xue JIANG,Shu-jun GUO,Qi-xian ZHANG. Iris secondary recognition based on decision particle swarm optimization and stable texture [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1329-1338.
[8] Kai XU,Zhi⁃gang CHEN,Jing⁃hua ZHAO,Lu DAI,Feng LI. Layout design method of star sensor based on particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 972-978.
[9] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[10] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[11] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[12] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[13] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] XING Hai-yan, GE Hua, LI Si-qi, YANG Wen-guang, SUN Xiao-jun. Hidden defect metal magnetic memory identification for welded joints based on fuzzy membership and maximum likelihood estimation [J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[15] LIU Ying, ZHANG Kai, YU Xiang-jun. Multi-objective optimization of hydrostatic bearing of hollow shaft based on surrogate model [J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!