Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (4): 725-737.doi: 10.13229/j.cnki.jdxbgxb20210088

   

Skeleton-based abnormal gait recognition: a survey

Hao-yu TIAN(),Xin MA(),Yi-bin LI   

  1. School of Control Science and Engineering,Shandong University,Jinan 250061,China
  • Received:2021-01-24 Online:2022-04-01 Published:2022-04-20
  • Contact: Xin MA E-mail:tianhaoyu@mail.sdu.edu.cn;maxin@sdu.edu.cn

Abstract:

The optical motion capture systems are extremely expensive for abnormal gait analysis, and the Kinect is a potential alternative equipment for its low?cost and convenience. The development of abnormal gait analysis is reviewed from four aspects: pathological characteristics of abnormal gait, abnormal gait data set, reliability of Kinect, and abnormal gait recognition method. Firstly, the abnormal gait and its pathological characteristics were summarized, and the common gait features and gait events in gait analysis were introduced. Then, the abnormal gait data sets collected by Kinect, wearable and pressure sensors are introduced. The feasibility of skeleton data collected by Kinect in gait analysis is discussed according to the existing experimental studies to verify the reliability of Kinect. Finally, the development of gait analysis is reviewed in detail from two aspects of abnormal gait feature extraction and abnormal gait classifier, and the shortcomings and development direction of current research are pointed out in practical application.

Key words: artificial intelligence, pathological abnormal gait, abnormal gait skeleton database, Kinect, abnormal gait recognition

CLC Number: 

  • TP18

Fig.1

Abnormal gait feature"

Fig.2

Distribution of research efforts on different gait pathologies for papers published between 1970 and 2016[1]"

Fig.3

Four gait phases and two gait phases[18](the objective foot is highlighted in gray)"

Table 1

Abnormal gait data set"

机 构数据集设 备

采样率

/Hz

采样人数样本量描 述
布里斯托尔大学SPHERE?walking201527Kinect v13020骨架信息

正常、帕金森步态、

偏瘫步态

坎特大学DAI28Kinect v230756序列

右膝损伤、左膝损伤、

右脚拖拽、左脚拖拽

蒙特利尔大学Walking gait dataset29Kinect v23091200帧/人/步态不平衡步态
法国勃艮第?弗朗什孔泰大学MMGS30Kinect v23027多模态信息平衡步态
爱达荷大学UI?PRMD31Vicon/Kinect v2100/301010人*10种动作*10次10 种康复动作
德克萨斯大学UTD?MHAD36Kinect v2 and wearable IMU30 and 5088 人*27种动作*4次

多模态信息,

动作识别

西北大学(美)MSR Daily Activity 3D Dataset37Kinect v130**320序列16 种日常动作
帕特雷大学UPCV Gait 32Kinect v1303030人*5序列步态身份识别
帕特雷大学UPCV Gait K2 33Kinect v2303030人*10序列步态身份识别
里斯本大学KS20 VisLab Multi?View Kinect skeleton 34Kinect v2302020人*5视角*3次

5种视角,步态身份

识别

山东大学SDUGait 35Kinect v230521040序列步态身份识别
PhysioNetHausdorff JM40力敏电阻**64足底压力多种疾病类型
PhysioNetParkinsen gait41?44压力传感器100166足底压力帕金森步态
PhysioNetLTMM39惯性传感器**91加速度信号跌倒预测
特拉维夫索拉斯基医疗中心(TASMC)DaphNet FoG dateset453个可穿戴惯性传感器64108 h

帕金森病人的

冰冻步态事件

Fig.4

Kinect camera and human skeleton data"

Fig.5

Treadmill and cameral layout[46]"

Table 2

Comparison of depth camera"

设备名称生产厂商技 术深度分辨率感知范围/m其他功能模块
Kinect v1Microsoft结构光技术320×2400.4~4.0麦克风阵列
Kinect v2Microsoft飞行时间(ToF)512×4240.4~4.5麦克风阵列
Azure Kinect DKMicrosoft飞行时间(ToF)

4种模式:

(640×576,320×288,

1024×1024,512×512)

4种模式:

(0.5~3.86,0.5~5.46,

0.25~2.21,0.25~2.88)

麦克风阵列,加速度计

和陀螺仪

RS D435Intel主动立体成像1280×7400.2~10**
RS ZR300Intel主动立体成像628×4680.55~2.8**
RS SR300Intel结构光技术640×4800.2~2**
Xtion Pro LiveASUS结构光技术640×4800.8~3.5**

Fig.6

Flow chart of abnormal gait analysis"

1 Chen S, Lach J, Lo B, et al. Toward pervasive gait analysis with wearable sensors: a systematic review[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(6): 1521-1537.
2 Figueiredo J, Santos C P, Moreno J C. Automatic recognition of gait patterns in human motor disorders using machine learning: a review[J]. Medical Engineering & Physics, 2018, 53: 1-12.
3 Perry J, Davids J R. Gait analysis: normal and pathological function[J]. Journal of Pediatric Orthopaedics, 1992, 12(6): 815.
4 Yang G. Body sensor networks [M]. Berlin: Springer, 2006.
5 Herssens N, Verbecque E, Hallemans A, et al. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? a systematic review[J]. Gait & Posture, 2018, 64: 181-190.
6 金德闻. 康复工程与生物机械学[M]. 北京:清华大学出版社, 2011.
7 Geerse D, Coolen B, Kolijn D, et al. Validation of foot placement locations from ankle data of a Kinect v2 sensor[J]. Sensors, 2017, 17(10): 2301.
8 Mentiplay B F, Perraton L G, Bower K J, et al. Gait assessment using the Microsoft Xbox One Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables[J]. Journal of Biomechanics, 2015, 48(10): 2166-2170.
9 Springer S, Yogev Seligmann G. Validity of the kinect for gait assessment: a focused review[J]. Sensors, 2016, 16(2): 194.
10 Bobillo F, Dranca L, Bernad J. A fuzzy ontology-based system for gait recognition using kinect sensor[C]∥International Conference on Scalable Uncertainty Management,New York,USA, 2017:397-404.
11 Ravì D, Wong C, Deligianni F, et al. Deep learning for health informatics[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(1): 4-21.
12 Yu K-H, Beam A L, Kohane I S. Artificial intelligence in healthcare[J]. Nature Biomedical Engineering, 2018, 2(10): 719-731.
13 Horst F, Lapuschkin S, Samek W, et al. Explaining the unique nature of individual gait patterns with deep learning[J]. Scientific Reports, 2019, 9(1): 1-13.
14 Ostchega Y, Harris T B, Hirsch R, et al. The prevalence of functional limitations and disability in older persons in the US: data from the National Health and Nutrition Examination Survey III[J]. Journal of the American Geriatrics Society, 2000, 48(9): 1132-1135.
15 Sudarsky L. Gait disorders: prevalence, morbidity, and etiology[J]. Advances in Neurology, 2001, 87: 111-117.
16 Verghese J, LeValley A, Hall C B, et al. Epidemiology of gait disorders in community‐residing older adults[J]. Journal of the American Geriatrics Society, 2006, 54(2): 255-261.
17 Iosa M, Fusco A, Marchetti F, et al. The golden ratio of gait harmony: repetitive proportions of repetitive gait phases[J]. BioMed Research International, 2013(3):No:918642.
18 Wang T, Wang Z, Zhang D, et al. Recognizing parkinsonian gait pattern by exploiting fine-grained movement function features[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2016, 8(1): 1-22.
19 Wang L, Tan T, Ning H, et al. Silhouette analysis-based gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1505-1518.
20 Yu S, Tan D, Tan T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C]∥The 18th International Conference on Pattern Recognition,Hong Kong, China, 2006:441-444.
21 Tan D, Huang K, Yu S, et al. Uniprojective features for gait recognition[C]∥International Conference on Biometrics, New Delhi, India, 2007:673-682.
22 Seely R D, Samangooei S, Lee M, et al. The university of southampton multi-biometric tunnel and introducing a novel 3d gait dataset[C]∥IEEE 2nd International Conference on Biometrics: Theory, Applications and Systems, Washington DC, USA,2008:1-6.
23 Shutler J D, Grant M G, Nixon M S, et al. On a large sequence-based human gait database[C]∥Applications and Science in Soft Computing,New York, USA, 2004:339-346.
24 李贻斌, 郭佳旻, 张勤. 人体步态识别方法与技术[J]. 吉林大学学报:工学版, 2020, 50(1): 1-18.
Li Yi-bin, Guo Jia-min, Zhang Qin. Methods and technologies of human gait recognition[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 1-18.
25 贲晛烨, 徐森, 王科俊. 行人步态的特征表达及识别综述[J]. 模式识别与人工智能, 2012, 25(1): 71-81.
Xian-ye Ben, Xu Sen, Wang Ke-jun. Review on pedestrian gait feature expression and recognition[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1): 71-81.
26 Luo J, Tang J, Tjahjadi T, et al. Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis[J]. Pattern Recognition, 2016, 60: 361-377.
27 Paiement A, Tao L, Hannuna S, et al. Online quality assessment of human movement from skeleton data[C]∥British Machine Vision Conference,London,UK, 2014:153-166.
28 Chaaraoui A A, Padilla-López J R, Flórez-Revuelta F. Abnormal gait detection with RGB-D devices using joint motion history features[C]∥The 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia,2015:1-6.
29 Nguyen T-N, Meunier J. Walking gait dataset: point clouds, skeletons and silhouettes[R]. Montreal:University of Montreal, 2018.
30 Khokhlova M, Migniot C, Morozov A, et al. Normal and pathological gait classification LSTM model[J]. Artificial Intelligence in Medicine, 2019, 94: 54-66.
31 Vakanski A, Jun H-P, Paul D, et al. A data set of human body movements for physical rehabilitation exercises[J]. Data, 2018, 3(1): 2.
32 Kastaniotis D, Theodorakopoulos I, Theoharatos C, et al. A framework for gait-based recognition using Kinect[J]. Pattern Recognition Letters, 2015, 68: 327-335.
33 Kastaniotis D, Theodorakopoulos I, Economou G, et al. Gait based recognition via fusing information from Euclidean and Riemannian manifolds[J]. Pattern Recognition Letters, 2016, 84: 245-251.
34 Nambiar A, Bernardino A, Nascimento J C, et al. Context-aware person re-identification in the wild via fusion of gait and anthropometric features[C]∥The 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG), IEEE, 2017:973-980.
35 Wang Y, Sun J, Li J, et al. Gait recognition based on 3D skeleton joints captured by kinect[C]∥ IEEE International Conference on Image Processing (ICIP): IEEE, 2016:3151-3155.
36 Chen C, Jafari R, Kehtarnavaz N. UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor[C]∥IEEE International Conference on Image Processing (ICIP), IEEE, 2015:168-172.
37 Wang J, Liu Z, Wu Y, et al. Mining actionlet ensemble for action recognition with depth cameras[C]∥IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2012:1290-1297.
38 Goldberger A L, Amaral L A, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220.
39 Weiss A, Brozgol M, Dorfman M, et al. Does the evaluation of gait quality during daily life provide insight into fall risk? a novel approach using 3-day accelerometer recordings[J]. Neurorehabilitation and Neural Repair, 2013, 27(8): 742-752.
40 Hausdorff J M, Lertratanakul A, Cudkowicz M E, et al. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis[J]. Journal of Applied Physiology, 2000,88(6): 2045-2053..
41 Frenkel-Toledo S, Giladi N, Peretz C, et al. Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently[J]. Journal of Neuroengineering and Rehabilitation, 2005, 2(1): 23.
42 Frenkel‐Toledo S, Giladi N, Peretz C, et al. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2005, 20(9): 1109-1114.
43 Hausdorff J M, Lowenthal J, Herman T, et al. Rhythmic auditory stimulation modulates gait variability in Parkinson's disease[J]. European Journal of Neuroscience, 2007, 26(8): 2369-2375.
44 Yogev G, Giladi N, Peretz C, et al. Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding?[J]. European Journal of Neuroscience, 2005, 22(5): 1248-1256.
45 Bachlin M, Plotnik M, Roggen D, et al. Wearable assistant for Parkinson's disease patients with the freezing of gait symptom[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 14(2): 436-446.
46 Clark R A, Mentiplay B F, Hough E, et al. Three-dimensional cameras and skeleton pose tracking for physical function assessment: a review of uses, validity, current developments and Kinect alternatives[J]. Gait & Posture, 2019,68: 193-200.
47 Pfister A, West A M, Bronner S, et al. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis[J]. Journal of Medical Engineering & Technology, 2014, 38(5): 274-280.
48 Stone E E, Skubic M. Evaluation of an inexpensive depth camera for passive in-home fall risk assessment[C]∥The 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, IEEE, 2011:71-77.
49 Stone E E, Skubic M. Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing[C]∥Annual international Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2011:6491-6494.
50 Clark R A, Pua Y-H, Fortin K, et al. Validity of the Microsoft Kinect for assessment of postural control[J]. Gait & Posture, 2012, 36(3): 372-377.
51 Dutta T. Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace[J]. Applied Ergonomics, 2012, 43(4): 645-649.
52 Mcginley J L, Baker R, Wolfe R, et al. The reliability of three-dimensional kinematic gait measurements: a systematic review[J]. Gait & Posture, 2009, 29(3): 360-369.
53 Hassan E A, Jenkyn T R, Dunning C E. Direct comparison of kinematic data collected using an electromagnetic tracking system versus a digital optical system[J]. Journal of Biomechanics, 2007, 40(4): 930-935.
54 Galna B, Barry G, Jackson D, et al. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease[J]. Gait & Posture, 2014, 39(4): 1062-1068.
55 Guess T M, Razu S, Jahandar A, et al. Comparison of 3D joint angles measured with the kinect 2.0 skeletal tracker versus a marker-based motion capture system[J]. Journal of Applied Biomechanics, 2017, 33(2): 176-181.
56 Eltoukhy M, Oh J, Kuenze C, et al. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment[J]. Gait & Posture, 2017, 51: 77-83.
57 Tanaka R, Takimoto H, Yamasaki T, et al. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment[J]. Journal of Biomechanics, 2018, 71: 281-285.
58 Tölgyessy M, Dekan M, Chovanec Ľ, et al. Evaluation of the Azure Kinect and its comparison to Kinect v1 and Kinect v2[J]. Sensors, 2021, 21(2): 413.
59 Albert J A, Owolabi V, Gebel A, et al. Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: a pilot study[J]. Sensors, 2020, 20(18): 5104.
60 Guo Y, Deligianni F, Gu X, et al. 3-D canonical pose estimation and abnormal gait recognition with a single RGB-D camera[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3617-3624.
61 Cao Z, Simon T, Wei S-E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,USA,2017:7291-7299.
62 Halmetschlager-Funek G, Suchi M, Kampel M, et al. An empirical evaluation of ten depth cameras: Bias, precision, lateral noise, different lighting conditions and materials, and multiple sensor setups in indoor environments[J]. IEEE Robotics & Automation Magazine, 2018, 26(1): 67-77.
63 Alharthi A S, Yunas S U, Ozanyan K B. Deep learning for monitoring of human gait: a review[J]. IEEE Sensors Journal, 2019, 19(21): 9575-9591.
64 Bei S, Zhen Z, Xing Z, et al. Movement disorder detection via adaptively fused gait analysis based on kinect sensors[J]. IEEE Sensors Journal, 2018, 18(17): 7305-7314.
65 Li Q, Wang Y, Sharf A, et al. Classification of gait anomalies from kinect[J]. The Visual Computer, 2018, 34(2): 229-241.
66 Dolatabadi E, Taati B, Mihailidis A. Automated classification of pathological gait after stroke using ubiquitous sensing technology[C]∥ The 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): IEEE, 2016:6150-6153.
67 Hu K, Wang Z, Mei S, et al. Vision-based freezing of gait detection with anatomic directed graph representation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 24(4): 1215-1225.
68 Procházka A, Vyšata O, Vališ M, et al. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect[J]. Digital Signal Processing, 2015, 47: 169-177.
69 Ťupa O, Procházka A, Vyšata O, et al. Motion tracking and gait feature estimation for recognising Parkinson's disease using MS Kinect[J]. Biomedical Engineering Online, 2015, 14(1): 97.
70 Jun K, Lee D-W, Lee K, et al. Feature extraction using an RNN autoencoder for skeleton-based abnormal gait recognition[J]. IEEE Access, 2020, 8: 19196-19207.
71 Gu X, Guo Y, Deligianni F, et al. Cross-subject and cross-modal transfer for generalized abnormal gait pattern recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,32(2): 546-560.
72 Tao L, Paiement A, Damen D, et al. A comparative study of pose representation and dynamics modelling for online motion quality assessment[J]. Computer Vision and Image Understanding, 2016, 148: 136-152.
73 Chen F, Cui X, Zhao Z, et al. Gait acquisition and analysis system for osteoarthritis based on hybrid prediction model[J]. Computerized Medical Imaging and Graphics, 2020, 85: 101782.
74 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J/OL].[2016-10-21]. .
75 Si C, Chen W, Wang W, et al. An attention enhanced graph convolutional lstm network for skeleton-based action recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seoul, Korea, 2019:1227-1236.
76 Zhang P, Lan C, Zeng W, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020:1112-1121.
77 Cheng K, Zhang Y, He X, et al. Skeleton-based action recognition with shift graph convolutional network[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle, USA, 2020:183-192.
78 Liu Z, Zhang H, Chen Z, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle, USA, 2020:143-152.
79 Ben X, Gong C, Zhang P, et al. Coupled bilinear discriminant projection for cross-view gait recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(3): 734-747.
80 Ben X, Zhang P, Lai Z, et al. A general tensor representation framework for cross-view gait recognition [J]. Pattern Recognition, 2019, 90: 87-98.
81 Li X, Makihara Y, Xu C, et al. Gait recognition via semi-supervised disentangled representation learning to identity and covariate features[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020:13309-13319.
82 Zhang Z, Tran L, Yin X, et al. Gait recognition via disentangled representation learning[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Korea, 2019:4710-4719.
83 Fan C, Peng Y, Cao C, et al. Gaitpart: Temporal part-based model for gait recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020:14225-14233.
84 Seifallahi M, Soltanizadeh H, Mehraban A H, et al. Alzheimer's disease detection using skeleton data recorded with Kinect camera[J]. Cluster Computing, 2020,23(2):1469-1481.
[1] Yong LIU,Lei XU,Chu-han ZHANG. Deep reinforcement learning model for text games [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 666-674.
[2] Jing-pei LEI,Dan-tong OUYANG,Li-ming ZHANG. Relation domain and range completion method based on knowledge graph embedding [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 154-161.
[3] Zhi-hua LI,Ye-chao ZHANG,Guo-hua ZHAN. Realtime mosaic and visualization of 3D underwater acoustic seabed topography [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 180-186.
[4] Yan-lei XU,Run HE,Yu-ting ZHAI,Bin ZHAO,Chen-xiao LI. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2304-2312.
[5] Yong YANG,Qiang CHEN,Fu-heng QU,Jun-jie LIU,Lei ZHANG. SP⁃k⁃means-+ algorithm based on simulated partition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1808-1816.
[6] Ya-hui ZHAO,Fei-yang YANG,Zhen-guo ZHANG,Rong-yi CUI. Korean text structure discovery based on reinforcement learning and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1387-1395.
[7] Yan-hua DONG,Jing-wei LIU,Jing-hua ZHAO,Liang LI,Fang-xi XIE. Real-time torque tracking control based on BPNN online learning prediction model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1405-1413.
[8] Fu LIU,Yi-xin LIANG,Tao HOU,Yang SONG,Bing KANG,Yun LIU. Improvement of fuzzy c-harmonic mean algorithm on unbalanced data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1447-1453.
[9] Fu-hua SHANG,Mao-jun CAO,Cai-zhi WANG. Local outlier data mining based on artificial intelligence technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 692-696.
[10] Hai-ying ZHAO,Wei ZHOU,Xiao-gang HOU,Xiao-li ZHANG. Double-layer annotation of traditional costume images based on multi-task learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 293-302.
[11] Dan-tong OUYANG,Cong MA,Jing-pei LEI,Sha-sha FENG. Knowledge graph embedding with adaptive sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 685-691.
[12] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[13] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[14] Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300.
[15] Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!