Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (4): 725-737.doi: 10.13229/j.cnki.jdxbgxb20210088
Hao-yu TIAN(),Xin MA(),Yi-bin LI
CLC Number:
1 | Chen S, Lach J, Lo B, et al. Toward pervasive gait analysis with wearable sensors: a systematic review[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(6): 1521-1537. |
2 | Figueiredo J, Santos C P, Moreno J C. Automatic recognition of gait patterns in human motor disorders using machine learning: a review[J]. Medical Engineering & Physics, 2018, 53: 1-12. |
3 | Perry J, Davids J R. Gait analysis: normal and pathological function[J]. Journal of Pediatric Orthopaedics, 1992, 12(6): 815. |
4 | Yang G. Body sensor networks [M]. Berlin: Springer, 2006. |
5 | Herssens N, Verbecque E, Hallemans A, et al. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? a systematic review[J]. Gait & Posture, 2018, 64: 181-190. |
6 | 金德闻. 康复工程与生物机械学[M]. 北京:清华大学出版社, 2011. |
7 | Geerse D, Coolen B, Kolijn D, et al. Validation of foot placement locations from ankle data of a Kinect v2 sensor[J]. Sensors, 2017, 17(10): 2301. |
8 | Mentiplay B F, Perraton L G, Bower K J, et al. Gait assessment using the Microsoft Xbox One Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables[J]. Journal of Biomechanics, 2015, 48(10): 2166-2170. |
9 | Springer S, Yogev Seligmann G. Validity of the kinect for gait assessment: a focused review[J]. Sensors, 2016, 16(2): 194. |
10 | Bobillo F, Dranca L, Bernad J. A fuzzy ontology-based system for gait recognition using kinect sensor[C]∥International Conference on Scalable Uncertainty Management,New York,USA, 2017:397-404. |
11 | Ravì D, Wong C, Deligianni F, et al. Deep learning for health informatics[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(1): 4-21. |
12 | Yu K-H, Beam A L, Kohane I S. Artificial intelligence in healthcare[J]. Nature Biomedical Engineering, 2018, 2(10): 719-731. |
13 | Horst F, Lapuschkin S, Samek W, et al. Explaining the unique nature of individual gait patterns with deep learning[J]. Scientific Reports, 2019, 9(1): 1-13. |
14 | Ostchega Y, Harris T B, Hirsch R, et al. The prevalence of functional limitations and disability in older persons in the US: data from the National Health and Nutrition Examination Survey III[J]. Journal of the American Geriatrics Society, 2000, 48(9): 1132-1135. |
15 | Sudarsky L. Gait disorders: prevalence, morbidity, and etiology[J]. Advances in Neurology, 2001, 87: 111-117. |
16 | Verghese J, LeValley A, Hall C B, et al. Epidemiology of gait disorders in community‐residing older adults[J]. Journal of the American Geriatrics Society, 2006, 54(2): 255-261. |
17 | Iosa M, Fusco A, Marchetti F, et al. The golden ratio of gait harmony: repetitive proportions of repetitive gait phases[J]. BioMed Research International, 2013(3):No:918642. |
18 | Wang T, Wang Z, Zhang D, et al. Recognizing parkinsonian gait pattern by exploiting fine-grained movement function features[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2016, 8(1): 1-22. |
19 | Wang L, Tan T, Ning H, et al. Silhouette analysis-based gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1505-1518. |
20 | Yu S, Tan D, Tan T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C]∥The 18th International Conference on Pattern Recognition,Hong Kong, China, 2006:441-444. |
21 | Tan D, Huang K, Yu S, et al. Uniprojective features for gait recognition[C]∥International Conference on Biometrics, New Delhi, India, 2007:673-682. |
22 | Seely R D, Samangooei S, Lee M, et al. The university of southampton multi-biometric tunnel and introducing a novel 3d gait dataset[C]∥IEEE 2nd International Conference on Biometrics: Theory, Applications and Systems, Washington DC, USA,2008:1-6. |
23 | Shutler J D, Grant M G, Nixon M S, et al. On a large sequence-based human gait database[C]∥Applications and Science in Soft Computing,New York, USA, 2004:339-346. |
24 | 李贻斌, 郭佳旻, 张勤. 人体步态识别方法与技术[J]. 吉林大学学报:工学版, 2020, 50(1): 1-18. |
Li Yi-bin, Guo Jia-min, Zhang Qin. Methods and technologies of human gait recognition[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 1-18. | |
25 | 贲晛烨, 徐森, 王科俊. 行人步态的特征表达及识别综述[J]. 模式识别与人工智能, 2012, 25(1): 71-81. |
Xian-ye Ben, Xu Sen, Wang Ke-jun. Review on pedestrian gait feature expression and recognition[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1): 71-81. | |
26 | Luo J, Tang J, Tjahjadi T, et al. Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis[J]. Pattern Recognition, 2016, 60: 361-377. |
27 | Paiement A, Tao L, Hannuna S, et al. Online quality assessment of human movement from skeleton data[C]∥British Machine Vision Conference,London,UK, 2014:153-166. |
28 | Chaaraoui A A, Padilla-López J R, Flórez-Revuelta F. Abnormal gait detection with RGB-D devices using joint motion history features[C]∥The 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia,2015:1-6. |
29 | Nguyen T-N, Meunier J. Walking gait dataset: point clouds, skeletons and silhouettes[R]. Montreal:University of Montreal, 2018. |
30 | Khokhlova M, Migniot C, Morozov A, et al. Normal and pathological gait classification LSTM model[J]. Artificial Intelligence in Medicine, 2019, 94: 54-66. |
31 | Vakanski A, Jun H-P, Paul D, et al. A data set of human body movements for physical rehabilitation exercises[J]. Data, 2018, 3(1): 2. |
32 | Kastaniotis D, Theodorakopoulos I, Theoharatos C, et al. A framework for gait-based recognition using Kinect[J]. Pattern Recognition Letters, 2015, 68: 327-335. |
33 | Kastaniotis D, Theodorakopoulos I, Economou G, et al. Gait based recognition via fusing information from Euclidean and Riemannian manifolds[J]. Pattern Recognition Letters, 2016, 84: 245-251. |
34 | Nambiar A, Bernardino A, Nascimento J C, et al. Context-aware person re-identification in the wild via fusion of gait and anthropometric features[C]∥The 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG), IEEE, 2017:973-980. |
35 | Wang Y, Sun J, Li J, et al. Gait recognition based on 3D skeleton joints captured by kinect[C]∥ IEEE International Conference on Image Processing (ICIP): IEEE, 2016:3151-3155. |
36 | Chen C, Jafari R, Kehtarnavaz N. UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor[C]∥IEEE International Conference on Image Processing (ICIP), IEEE, 2015:168-172. |
37 | Wang J, Liu Z, Wu Y, et al. Mining actionlet ensemble for action recognition with depth cameras[C]∥IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2012:1290-1297. |
38 | Goldberger A L, Amaral L A, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. |
39 | Weiss A, Brozgol M, Dorfman M, et al. Does the evaluation of gait quality during daily life provide insight into fall risk? a novel approach using 3-day accelerometer recordings[J]. Neurorehabilitation and Neural Repair, 2013, 27(8): 742-752. |
40 | Hausdorff J M, Lertratanakul A, Cudkowicz M E, et al. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis[J]. Journal of Applied Physiology, 2000,88(6): 2045-2053.. |
41 | Frenkel-Toledo S, Giladi N, Peretz C, et al. Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently[J]. Journal of Neuroengineering and Rehabilitation, 2005, 2(1): 23. |
42 | Frenkel‐Toledo S, Giladi N, Peretz C, et al. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2005, 20(9): 1109-1114. |
43 | Hausdorff J M, Lowenthal J, Herman T, et al. Rhythmic auditory stimulation modulates gait variability in Parkinson's disease[J]. European Journal of Neuroscience, 2007, 26(8): 2369-2375. |
44 | Yogev G, Giladi N, Peretz C, et al. Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding?[J]. European Journal of Neuroscience, 2005, 22(5): 1248-1256. |
45 | Bachlin M, Plotnik M, Roggen D, et al. Wearable assistant for Parkinson's disease patients with the freezing of gait symptom[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 14(2): 436-446. |
46 | Clark R A, Mentiplay B F, Hough E, et al. Three-dimensional cameras and skeleton pose tracking for physical function assessment: a review of uses, validity, current developments and Kinect alternatives[J]. Gait & Posture, 2019,68: 193-200. |
47 | Pfister A, West A M, Bronner S, et al. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis[J]. Journal of Medical Engineering & Technology, 2014, 38(5): 274-280. |
48 | Stone E E, Skubic M. Evaluation of an inexpensive depth camera for passive in-home fall risk assessment[C]∥The 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, IEEE, 2011:71-77. |
49 | Stone E E, Skubic M. Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing[C]∥Annual international Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2011:6491-6494. |
50 | Clark R A, Pua Y-H, Fortin K, et al. Validity of the Microsoft Kinect for assessment of postural control[J]. Gait & Posture, 2012, 36(3): 372-377. |
51 | Dutta T. Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace[J]. Applied Ergonomics, 2012, 43(4): 645-649. |
52 | Mcginley J L, Baker R, Wolfe R, et al. The reliability of three-dimensional kinematic gait measurements: a systematic review[J]. Gait & Posture, 2009, 29(3): 360-369. |
53 | Hassan E A, Jenkyn T R, Dunning C E. Direct comparison of kinematic data collected using an electromagnetic tracking system versus a digital optical system[J]. Journal of Biomechanics, 2007, 40(4): 930-935. |
54 | Galna B, Barry G, Jackson D, et al. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease[J]. Gait & Posture, 2014, 39(4): 1062-1068. |
55 | Guess T M, Razu S, Jahandar A, et al. Comparison of 3D joint angles measured with the kinect 2.0 skeletal tracker versus a marker-based motion capture system[J]. Journal of Applied Biomechanics, 2017, 33(2): 176-181. |
56 | Eltoukhy M, Oh J, Kuenze C, et al. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment[J]. Gait & Posture, 2017, 51: 77-83. |
57 | Tanaka R, Takimoto H, Yamasaki T, et al. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment[J]. Journal of Biomechanics, 2018, 71: 281-285. |
58 | Tölgyessy M, Dekan M, Chovanec Ľ, et al. Evaluation of the Azure Kinect and its comparison to Kinect v1 and Kinect v2[J]. Sensors, 2021, 21(2): 413. |
59 | Albert J A, Owolabi V, Gebel A, et al. Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: a pilot study[J]. Sensors, 2020, 20(18): 5104. |
60 | Guo Y, Deligianni F, Gu X, et al. 3-D canonical pose estimation and abnormal gait recognition with a single RGB-D camera[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3617-3624. |
61 | Cao Z, Simon T, Wei S-E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,USA,2017:7291-7299. |
62 | Halmetschlager-Funek G, Suchi M, Kampel M, et al. An empirical evaluation of ten depth cameras: Bias, precision, lateral noise, different lighting conditions and materials, and multiple sensor setups in indoor environments[J]. IEEE Robotics & Automation Magazine, 2018, 26(1): 67-77. |
63 | Alharthi A S, Yunas S U, Ozanyan K B. Deep learning for monitoring of human gait: a review[J]. IEEE Sensors Journal, 2019, 19(21): 9575-9591. |
64 | Bei S, Zhen Z, Xing Z, et al. Movement disorder detection via adaptively fused gait analysis based on kinect sensors[J]. IEEE Sensors Journal, 2018, 18(17): 7305-7314. |
65 | Li Q, Wang Y, Sharf A, et al. Classification of gait anomalies from kinect[J]. The Visual Computer, 2018, 34(2): 229-241. |
66 | Dolatabadi E, Taati B, Mihailidis A. Automated classification of pathological gait after stroke using ubiquitous sensing technology[C]∥ The 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): IEEE, 2016:6150-6153. |
67 | Hu K, Wang Z, Mei S, et al. Vision-based freezing of gait detection with anatomic directed graph representation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 24(4): 1215-1225. |
68 | Procházka A, Vyšata O, Vališ M, et al. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect[J]. Digital Signal Processing, 2015, 47: 169-177. |
69 | Ťupa O, Procházka A, Vyšata O, et al. Motion tracking and gait feature estimation for recognising Parkinson's disease using MS Kinect[J]. Biomedical Engineering Online, 2015, 14(1): 97. |
70 | Jun K, Lee D-W, Lee K, et al. Feature extraction using an RNN autoencoder for skeleton-based abnormal gait recognition[J]. IEEE Access, 2020, 8: 19196-19207. |
71 | Gu X, Guo Y, Deligianni F, et al. Cross-subject and cross-modal transfer for generalized abnormal gait pattern recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,32(2): 546-560. |
72 | Tao L, Paiement A, Damen D, et al. A comparative study of pose representation and dynamics modelling for online motion quality assessment[J]. Computer Vision and Image Understanding, 2016, 148: 136-152. |
73 | Chen F, Cui X, Zhao Z, et al. Gait acquisition and analysis system for osteoarthritis based on hybrid prediction model[J]. Computerized Medical Imaging and Graphics, 2020, 85: 101782. |
74 | Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J/OL].[2016-10-21]. . |
75 | Si C, Chen W, Wang W, et al. An attention enhanced graph convolutional lstm network for skeleton-based action recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seoul, Korea, 2019:1227-1236. |
76 | Zhang P, Lan C, Zeng W, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020:1112-1121. |
77 | Cheng K, Zhang Y, He X, et al. Skeleton-based action recognition with shift graph convolutional network[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle, USA, 2020:183-192. |
78 | Liu Z, Zhang H, Chen Z, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle, USA, 2020:143-152. |
79 | Ben X, Gong C, Zhang P, et al. Coupled bilinear discriminant projection for cross-view gait recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(3): 734-747. |
80 | Ben X, Zhang P, Lai Z, et al. A general tensor representation framework for cross-view gait recognition [J]. Pattern Recognition, 2019, 90: 87-98. |
81 | Li X, Makihara Y, Xu C, et al. Gait recognition via semi-supervised disentangled representation learning to identity and covariate features[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020:13309-13319. |
82 | Zhang Z, Tran L, Yin X, et al. Gait recognition via disentangled representation learning[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Korea, 2019:4710-4719. |
83 | Fan C, Peng Y, Cao C, et al. Gaitpart: Temporal part-based model for gait recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020:14225-14233. |
84 | Seifallahi M, Soltanizadeh H, Mehraban A H, et al. Alzheimer's disease detection using skeleton data recorded with Kinect camera[J]. Cluster Computing, 2020,23(2):1469-1481. |
[1] | Yong LIU,Lei XU,Chu-han ZHANG. Deep reinforcement learning model for text games [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 666-674. |
[2] | Jing-pei LEI,Dan-tong OUYANG,Li-ming ZHANG. Relation domain and range completion method based on knowledge graph embedding [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 154-161. |
[3] | Zhi-hua LI,Ye-chao ZHANG,Guo-hua ZHAN. Realtime mosaic and visualization of 3D underwater acoustic seabed topography [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 180-186. |
[4] | Yan-lei XU,Run HE,Yu-ting ZHAI,Bin ZHAO,Chen-xiao LI. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2304-2312. |
[5] | Yong YANG,Qiang CHEN,Fu-heng QU,Jun-jie LIU,Lei ZHANG. SP⁃k⁃means-+ algorithm based on simulated partition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1808-1816. |
[6] | Ya-hui ZHAO,Fei-yang YANG,Zhen-guo ZHANG,Rong-yi CUI. Korean text structure discovery based on reinforcement learning and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1387-1395. |
[7] | Yan-hua DONG,Jing-wei LIU,Jing-hua ZHAO,Liang LI,Fang-xi XIE. Real-time torque tracking control based on BPNN online learning prediction model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1405-1413. |
[8] | Fu LIU,Yi-xin LIANG,Tao HOU,Yang SONG,Bing KANG,Yun LIU. Improvement of fuzzy c-harmonic mean algorithm on unbalanced data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1447-1453. |
[9] | Fu-hua SHANG,Mao-jun CAO,Cai-zhi WANG. Local outlier data mining based on artificial intelligence technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 692-696. |
[10] | Hai-ying ZHAO,Wei ZHOU,Xiao-gang HOU,Xiao-li ZHANG. Double-layer annotation of traditional costume images based on multi-task learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 293-302. |
[11] | Dan-tong OUYANG,Cong MA,Jing-pei LEI,Sha-sha FENG. Knowledge graph embedding with adaptive sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 685-691. |
[12] | Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18. |
[13] | Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667. |
[14] | Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300. |
[15] | Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919. |
|