Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (6): 1550-1565.doi: 10.13229/j.cnki.jdxbgxb.20221496
Hui JIANG1,2(),Xin LI1,Xiao-yu BAI3
CLC Number:
1 | Kawashima K, Macrae G A, Hoshikuma J, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5): 523-530. |
2 | Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. |
3 | Hyogo Earthquake Engineering Research Center. Report of the first joint planning meeting for the second phase of NEES/E-Defense collaborative research on earthquake engineering[R]. Berkeley: University of California, 2009. |
4 | 吕西林,全柳萌,蒋欢军. 从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J]. 地震工程与工程振动, 2017, 37(3): 1-9. |
Xi-lin Lü, Quan Liu-meng, Jiang Huan-jun. Research trend of earthquake resilient structures seen from 16WCEE[J]. Earthquake Engingeering and Engineering Dynamics, 2017, 37(3): 1-9. | |
5 | 袁万城, 王思杰, 李怀峰, 等. 桥梁抗震智能与韧性的发展[J]. 中国公路学报, 2021, 34(2): 98-117. |
Yuan Wan-cheng, Wang Si-jie, Li Huai-feng, et al. Development of intelligence and resilience for bridge seismic design[J]. China Journal of Highway and Transport, 2021, 34(2): 98-117. | |
6 | Makris N. A half-century of rocking isolation[J]. Earthquakes and Structures, 2014, 7(6): 1187-1221. |
7 | Housner G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417. |
8 | Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation[J]. Journal of Structural Engineering, 2008, 134(1): 96-107. |
9 | 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念—可恢复功能结构[J]. 同济大学学报: 自然科学版, 2011, 39(7): 941-948. |
Lv Xi-lin, Chen Yun, Mao Yuan-jun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University(Natural Science), 2011, 39(7): 941-948. | |
10 | 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9): 1-10. |
Zhou Ying, Lv Xi-lin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9): 1-10. | |
11 | 陆新征, 曾翔, 许镇, 等. 建设地震韧性城市所面临的挑战[J]. 城市与减灾, 2017, 115(4): 29-34. |
Lu Xin-zheng, Zeng Xiang, Xu Zhen, et al. Challenges of building earthquake resilient cities[J]. City and Disaster Reduction, 2017, 115(4): 29-34. | |
12 | 杜修力, 周雨龙, 韩强, 等. 摇摆桥墩的研究综述[J]. 地震工程与工程振动, 2018, 38(5): 1-11. |
Du Xiu-li, Zhou Yu-long, Han Qiang, et al. State-of-the-art on rocking piers[J]. Earthquake Engingeering and Engineering Dynamics, 2018, 38(5): 1-11. | |
13 | Han Q, Jia Z L, Xu K, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188(11): 218-232. |
14 | Guan Z G, Zhang J, Li J. Multilevel performance classifications of tall RC bridge columns toward postearthquake rehabilitation requirements[J]. Journal of Bridge Engineering, 2017, 22(10): No.04017080. |
15 | 夏修身, 陈兴冲. 铁路高墩桥梁基底摇摆隔震与墩顶减震对比研究[J]. 铁道学报, 2011, 33(9): 102-107. |
Xia Xiu-shen, Chen Xing-chong. Controlled rocking and pier top seismic isolation of railway bridge with tall piers[J]. Journal of the China Railway Society, 2011, 33(9): 102-107. | |
16 | Xu L H, Fan X W, Li Z X. Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(7): 1065-1080. |
17 | Fang C, Wang W. Shape Memory Alloys for Seismic Resilience[M]. Singapore: Springer, 2019. |
18 | 韩强, 董慧慧, 王利辉, 等. 基于可更换构件的可恢复功能桥梁防震结构研究综述[J]. 中国公路学报, 2021, 34(9): 215-230. |
Han Qiang, Dong Hui-hui, Wang Li-hui, et al. Review of seismic resilient bridge structures with replaceable members[J]. China Journal of Highway and Transport, 2021, 34(9): 215-230. | |
19 | . 公路桥梁抗震设计规范 [S]. |
20 | . 铁路工程抗震设计规范 [S]. |
21 | AA Bridge Design Specification[S]. |
22 | Eurocode 8—2005. Eurocode 8: Design of structures for earthquake resistance–Part 2: Bridges [S]. |
23 | Cormack L G. The design and construction of the major bridges on the mangaweka rail deviation[J].Transactions of the Institute of Professional Engineers New Zealand, 1988: 16-23. |
24 | Priestley M J N, Seible F, Calvi G M. Seismic Design and Retrofit of Bridges[M]. State of New Jersey: John Wiley and Sons, 1996. |
25 | Hinman J, Toan V, Thoman S. Seismic retrofit of 1958 carquinez bridge[J]. Transportation Research Record, 1998, 1624(1): 54-63. |
26 | Dowdell D J, Hamersley B A. Lions'gate bridge north approach—seismic retrofit[C]∥Proceedings of the Third International Conference, Rotterdam, Balkema, 2000: 319-326. |
27 | Astaneh A, Shen J H. Rocking behavior and retrofit of tall bridge piers[C]∥Structural Engineering in Natural Hazards Mitigation, New York, USA, 1993: 121-126. |
28 | Routledge P, Mchaffie B, Cowan M, et al. Wigram-Magdala link bridge: low-damage details for a more efficient seismic design philosophy[J]. Structural Engineering International, 2020, 30(2): 177-184. |
29 | Mashal M, Palermo A. Low-damage seismic design for accelerated bridge construction[J]. Journal of Bridge Engineering, 2019, 24(7): No.04019066. |
30 | Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design[R]. New York: National Center for Earthquake Engineering Research, 1997. |
31 | Zhou Y L, Han Q, Du X L, et al. Shaking table tests of post-tensioned rocking bridge with double-column bents[J]. Journal of Bridge Engineering, 2019, 24(8): 04019080. |
32 | Palermo A, Pampanin S. Enhanced seismic performance of hybrid bridge systems: comparison with traditional monolithic solutions[J]. Journal of Earthquake Engineering, 2008, 12(8): 1267-1295. |
33 | 魏博, 贾俊峰, 欧进萍, 等. 外置耗能器对自复位预制RC桥墩抗震性能的影响研究[J]. 中国公路学报, 2021, 34(2): 220-229. |
Wei Bo, Jia Jun-feng, Jin-ping Ou, et al. Study on the effect of exterior dampers on the seismic performance of self-centering precast bridge columns[J]. China Journal of Highway and Transport, 2021, 34(2): 220-229. | |
34 | Wang W, Fang C, Shen D Y, et al. Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation[J]. Engineering Structures, 2021, 242(17): No.112527. |
35 | Jia J F, Zhang K D, Wu S W, et al. Seismic performance of self-centering precast segmental bridge columns under different lateral loading directions[J]. Engineering Structures, 2020, 221(20): No.111037. |
36 | 孙治国, 赵泰儀, 王东升, 等. 基于RSC体系的双层桥梁排架墩地震损伤控制设计[J]. 中国公路学报, 2020, 33(3): 97-106. |
Sun Zhi-guo, Zhao Tai-yi, Wang Dong-sheng, et al. Seismic damage control design for double-deck bridge bents based on rocking self-centering system[J]. China Journal of Highway and Transport, 2020, 33(3): 97-106. | |
37 | Wang Z, Wang J Q, Tang Y C, et al. Seismic behavior of precast segmental uhpc bridge columns with replaceable external cover plates and internal dissipaters[J]. Engineering Structures, 2018, 177(24): 540-555. |
38 | Zheng Y, Fang C, Liang D, et al. An innovative seismic-resilient bridge with shape memory alloy-washer-based footing rocking RC piers[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(5): 549-567. |
39 | 刘正楠, 陈兴冲, 张永亮, 等. 非规则铁路连续梁桥抗震体系优化[J]. 中国铁道科学, 2020, 41(170): 57-63. |
Liu Zheng-nan, Chen Xing-chong, Zhang Yong-liang, et al. Optimization of aseismic system for irregular railway continuous beam bridge[J]. China Railway Science, 2020, 41(170): 57-63. | |
40 | 刘雪山, 李建中, 张宏杰, 等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报, 2021, 34(11): 116-128. |
Liu Xue-shan, Li Jian-zhong, Zhang Hong-jie, et al. Experimental analysis of seismic performance of precast assembled concrete filled steel tube piers under different structures[J]. China Journal of Highway and Transport, 2021, 34(11): 116-128. | |
41 | Elgawady M, Booker A J, Dawood H M. Seismic behavior of posttensioned concrete-filled fiber tubes[J]. Journal of Composites for Construction, 2010, 14(5): 616-628. |
42 | Billington S L, Yoon J K. Cyclic response of unbonded posttensioned precast columns with ductility fiber-reinforced concrete[J]. Journal of Bridge Engineering, 2004, 9(4): 353-363. |
43 | 何铭华, 辛克贵, 郭佳. 新型自复位桥梁墩柱节点的局部稳定性研究[J]. 工程力学, 2012, 29(4): 122-127. |
He Ming-hua, Xin Ke-gui, Guo Jia. Local stability study of new bridge piers with self-centering joints[J]. Engineering Mechanics, 2012, 29(4): 122-127. | |
44 | Cheng C T. Shaking table tests of a self-centering designed bridge substructure[J]. Engineering Structures, 2008, 30(12): 3426-3433. |
45 | Deng L J, Kutter B L, Kunnath S K. Centrifuge modeling of bridge systems designed for rocking foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(3): 335-344. |
46 | Guan Z G, Chen X, Li J. Experimental investigation of the seismic performance of bridge models with conventional and rocking pile group foundations[J]. Engineering Structures, 2018, 168(15): 889-902. |
47 | Anastasopoulos I, Gazetas G, Loli M, et al. Soil failure can be used for seismic protection of structures[J]. Bulletin of Earthquake Engineering, 2010, 8(2): 309-326. |
48 | Gavras A G, Kutter B L, Hakhamaneshi M, et al. Database of rocking shallow foundation performance: dynamic shaking[J]. Earthquake Spectra, 2020, 36(2): 960-982. |
49 | El-hawat O, Fatahi B, Taciroglu E. Novel post-tensioned rocking piles for enhancing the seismic resilience of bridges[J]. Earthquake Engineering and Structural Dynamics, 2021, 51(2): 393-417. |
50 | 贾毅, 赵人达, 李福海, 等. 减隔震混合装置对大跨度斜拉桥地震响应的影响[J]. 吉林大学学报: 工学版, 2020, 50(4): 1411-1418. |
Jia Yi, Zhao Ren-da, Li Fu-hai, et al. Effects of hybrid seismic isolation device on seismic response of long-span cable-stayed bridge[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1411-1418. | |
51 | Wang W, Fang C, Zhao Y, et al. Self-centering friction spring dampers for seismic resilience[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(9): 1045-1065. |
52 | 韩强, 贾振雷, 王晓强, 等. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150, 190. |
Han Qiang, Jia Zhen-lei, Wang Xiao-qiang, et al. Behavior test and restoring force model of disc-spring self-centering buckling-restrained braces[J]. Engineering Mechanics, 2018, 35(6): 144-150, 190. | |
53 | Wang W, Fang C, Shen D, et al. Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation[J]. Engineering Structures, 2021, 242(15): No.112527. |
54 | Fang C, Wang W, Shen D. Development and experimental study of disc spring-based self-centering devices for seismic resilience[J]. Journal of Structural Engineering, 2021, 147(7): No.04021094. |
55 | Chen Jun-bai, Wang W, Fang C. Manufacturing, testing and simulation of novel SMA-based variable friction dampers with enhanced deformability[J]. Journal of Building Engineering, 2022, 45(1): No.103513. |
56 | Jeffrey E, Constantin C, ROBERT T. Design and testing of an enhanced- elongation telescoping self-centering energy-dissipative brace[J]. Journal of Structural Engineering, 2015, 141(6): No.04014163. |
57 | 刘云帅, 韩建平. 自复位单向摩擦阻尼器梁桥数值模拟及混合试验[J]. 土木工程学报, 2020, 53(): 294-300. |
Liu Yun-shuai, Han Jian-ping. Numerical simulation and hybrid test of the girder bridge with self-centering unidirectional friction damper[J]. China Civil Engineering Journal, 2020, 53(Sup.2): 294-300. | |
58 | Xiao Y, Marc O E, Zhou Y, et al. Low-prestressing, self-centering energy dissipative brace[J]. Earthquake Engineering & Structural Dynamics, 2022, 51(12): 2837-2857. |
59 | Jiang H, Song G, Huang L, et al. Development and application of a deformation-amplified self-centering energy dissipation device[J]. Engineering Structures, 2023, 280(7): No.115671. |
60 | Fang C, Wang W, Zhang A, et al. Behavior and design of self-centering energy dissipative devices equipped with superelastic SMA ring springs[J]. Journal of Structural Engineering, 2019, 145(10): No.04019109. |
61 | Liang D, Zheng Y, Fang C, et al. Shape memory alloy (SMA)-cable-controlled sliding bearings: development, testing, and system behavior[J]. Smart Materials and Structures, 2020, 29(8): No.085006. |
62 | Fang C, Ping Y, Chen Y, et al. Seismic performance of self-centering steel frames with SMA-viscoelastic hybrid braces[J]. Journal of Earthquake Engineering, 2020, 10(26): 1-28. |
63 | 吕兆华, 平奕炜, 方成, 等. SMA-VED混合自复位支撑钢框架地震易损性与风险分析[J]. 世界地震工程, 2022, 38(2): 10-20. |
Lv Zhao-hua, Ping Yi-wei, Fang Cheng, et al. Seismic fragility analysis and risk assessment of SMA-VED hybrid self-centering braced steel frames[J]. World Earthquake Engineering, 2022, 38(2): 10-20. | |
64 | 张哲熹,方成,王伟,等. Fe-SMA的材料特性及在土木工程中的应用进展[J]. 防灾减灾工程学报, 2022, 42(2): 411-424. |
Zhang Zhe-xi, Fang Cheng, Wang Wei, et al. Material properties of Fe-SMA and its application in civil engineering, 2022, 42(2): 411-424. | |
65 | Dong H H, Du X L, Han Q, et al. Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces[J]. Bulletin of Earthquake Engineering, 2019, 17(6): 3255-3281. |
66 | 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187. |
Xu Long-he, Wu Hu. Seismic performance study along the transverse direction of cable-stayed bridges with self-centering energy dissipation braces[J]. Engineering Mechanics, 2019, 36(4): 177-187. | |
67 | Zhou P, Liu M, Li H, et al. Experimental investigations on seismic control of cable-stayed bridges using shape memory alloy self-centering dampers[J]. Structural Control and Health Monitoring, 2018, 25(7): No.e2180. |
68 | Mishra S K, Gur S, Roy K, et al. Response of bridges isolated by shape memory alloy rubber bearing[J]. Journal of Bridge Engineering, 2016, 21(3): No.04015071. |
69 | Li S, Dezfuli F H, Wang J Q, et al. Longitudinal seismic response control of long-span cable-stayed bridges using shape memory alloy wire-based lead rubber bearings under near-fault records[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(5): 703-728. |
70 | Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(3): 331-354. |
71 | Pampanin S, Priestley M J N, Sritharan S. Analytical modelling of the seismic behavior of precast concrete frames designed with ductility connections[J]. Journal of Earthquake Engineering, 2001, 5(3): 329-367. |
72 | Aslam M, Godden W G, Scalise D T. Earthquake rocking response of rigid bodies[J]. Journal of the Structural Division, 1980, 106(2): 377-392. |
73 | Makris N, Zhang J. Rocking response and overturning of anchored equipment under seismic excitation[R]. Berkeley: Pacific Earthquake Engineering Research Center, 1999. |
74 | Psycharis I N, Jennings P C. Rocking of slender rigid bodies allowed to uplift[J]. Earthquake Engineering and Structural Dynamics, 1983, 11(1): 57-76. |
75 | Chatzis M N, Smyth A W. Robust modeling of the rocking problem[J]. Journal of Engineering Mechanics, 2012, 138(3): 247-262. |
76 | Palermo A, Pampanin S, Calvi G M. Concept and development of hybrid solutions for seismic resistant bridge systems[J]. Journal of Earthquake Engineering, 2005, 9(6): 899-921. |
77 | 孙治国, 赵泰儀, 石岩, 等. 摇摆-自复位桥墩抗震性能数值建模方法研究[J]. 应用基础与工程科学学报, 2019, 27(6): 1357-1369. |
Sun Zhi-guo, Zhao Tai-yi, Shi Yan, et al. Research on numerical modeling method for rocking self-centering bridge piers[J]. Journal of Basic Science And Engineering, 2019, 27(6): 1357-1369. | |
78 | 樊晓伟. 新型预压弹簧自恢复耗能支撑结构抗震性能设计理论与试验研究[D]. 北京: 北京交通大学土木建筑工程学院, 2019. |
Fan Xiao-wei. Theoretical and experimental research on seismic performance design of buildings with pre-pressed spring self-centering energy dissipation braces[D]. Beijing: School of Civil Engineering, Beijing Jiaotong University, 2019. | |
79 | 徐龙河, 孙雨生, 要世乾, 等. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127, 146. |
Xu Long-he, Sun Yu-sheng, Yao Shi-qian, et al. restoring force model and experimental verification of an assembled self-centering energy dissipation brace[J]. Engineering Mechanics, 2019, 36(6): 119-127, 146. | |
80 | Xu L H, Jiang H, Xie X S, et al. Modeling of disc spring self-centering energy dissipation braces from inactive state to design limit state[J]. Journal of Engineering Mechanics, 2021, 147(10): No.04021077. |
81 | Wang X W, Shafieezadeh A, Ye A J. Optimal EDPs for post-earthquake damage assessment of extended pile-shaft-supported bridges subjected to transverse spreading[J]. Earthquake Spectra, 2019, 35(3): 1367-1396. |
82 | 周雨龙, 韩强, 张劲泉, 等. 消能自复位摇摆框架墩结构地震反应及易损性分析[J]. 中国公路学报, 2021, 34(11): 153-164. |
Zhou Yu-long, Han Qiang, Zhang Jin-quan, et al. Seismic response and fragility analysis of post-tensioned rocking bridge frames with dampers[J]. China Journal of Highway and Transport, 2021, 34(11): 153-164. | |
83 | 王军文, 张伟光, 李建中. 摇摆式预应力混凝土桥墩基于位移的抗震设计方法研究[J]. 振动与冲击, 2014, 33(24): 106-111. |
Wang Jun-wen, Zhang Wei-guang, Li Jian-zhong. Displacement-based aseismic design method for rocking bridge piers with posttensioned tendons[J]. Journal of Vibration and Shock, 2014, 33(24): 106-111. | |
84 | 韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017, 30(12): 169-177. |
Han Qiang, Jia Zhen-lei, He Wei-li, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017, 30(12): 169-177. | |
85 | 董慧慧. 自复位耗能支撑桥梁结构体系及其性能抗震设计方法[D]. 北京: 北京工业大学建筑工程学院, 2018. |
Dong Hui-hui. Seismic performance and design method of bridges with SCEBS[D]. Beijing: College of Architecture and Civil Engineering, Beijing University of Technology, 2018. |
[1] | Zhen-yong DI,Xin-hui YANG,Xiao LIN. Seismic performance analysis of building double beam column joints based on load displacement hysteretic curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2061-2066. |
[2] | Xiao-ming HUANG,Run-min ZHAO. Status and prospects of highway transportation infrastructure resilience research [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1529-1549. |
[3] | Yue ZHANG,Chuan-sen LIU,Fei SONG. Influence of abutment back wall on continuous girder bridge's seismic fragility [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1372-1380. |
[4] | Shu-wei LAN,Dong-hua ZHOU,Xu CHEN,Nan-ming MO. Practical calculation method for the critical bearing capacity of double column bridge with high piers [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1105-1111. |
[5] | Yan-tao TIAN,Fu-qiang XU,Kai-ge WANG,Zi-xu HAO. Expected trajectory prediction of vehicle considering surrounding vehicle information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 674-681. |
[6] | Yang ZHANG,Ao-peng WANG,Jing-lin ZHANG,Tao MA,Si-yu CHEN. Dry shrinkage in cement⁃stabilized macadam: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 297-311. |
[7] | Qi-kai SUN,Nan ZHANG,Xiao LIU,Zi-ji ZHOU. Dynamic reduction coefficients of steel⁃concrete composite beam based on Timoshenko beam theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 488-495. |
[8] | Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404. |
[9] | Hua-wen YE,Zhi-chao DUAN,Ji-lin LIU,Yu ZHOU,Bing HAN. Wheel⁃load diffusion effect on orthotropic steel⁃concrete composite bridge deck [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1808-1816. |
[10] | Li-feng WANG,Zi-wang XIAO,Sai-sai YU. New risk analysis method based on Bayesian network for hanging basker system of multi-tower cable-stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 865-873. |
[11] | Yan-ling ZHANG,Can WANG,Xu ZHANG,Ang-yang WANG,Yun-sheng LI. Human⁃induced vibration analysis and pedestrian comfort evaluation for suspension footbridge with different hunger systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2644-2652. |
[12] | Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078. |
[13] | Wei CHEN,Tian-bao WAN,Zhong-bin WANG,Xuan LI,Rui-li SHEN. Design and performance of internal air supply conduit for dehumidification in main cables of suspension bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1749-1755. |
[14] | Shu-lun GUO,Tie-yi ZHONG,Zhi-gang YAN. Calculation method of buffeting response for stay cables of long⁃span cable⁃stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1756-1762. |
[15] | Kai GAO,Gang LIU. Effective strength improvement of global critical strength branch and bound method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 597-603. |
|