Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 400-409.doi: 10.13229/j.cnki.jdxbgxb.20220337

Previous Articles    

Three⁃point bending fatigue properties of carbon fiber composite laminates

Liang XU1(),Jing-hou XIAO1,Wan-wan SONG2,Song ZHOU1()   

  1. 1.School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136,China
    2.Factory 53,Shenyang Aircraft Corporation,Shenyang 110034,China
  • Received:2022-06-20 Online:2024-02-01 Published:2024-03-29
  • Contact: Song ZHOU E-mail:sysyxu@163.com;zhousong23@163.com

Abstract:

In this paper, three-point bending tests of T700 carbon fiber composite multi-directional laminates with different thicknesses are carried out under two stress ratios and three stress levels, and the static and fatigue properties of three-point bending are analyzed. The morphology after damage was observed in different ways. The results show that the increase of material thickness increases the flexural strength and modulus of the specimen, and the three-point bending fatigue life of composite multi-directional laminates is proportional to the material thickness, and inversely proportional to the test stress ratio and stress level. The final fatigue failure degree of the sample is related to the fatigue life, the higher the number of fatigue cycles, the more severe the damage in the transverse and longitudinal directions of the plywood. At the same time, the greater the thickness of the sample, the more obvious the delamination phenomenon, and the phenomenon of fiber pull out.

Key words: composite material, three point bending, bending fatigue, destroy the shape, fatigue performance

CLC Number: 

  • TB332

Table 1

Three laminate sizes"

试样长/mm宽/mm厚/mm
2 mm厚度8412.52.0
2.4 mm厚度8412.52.4
7 mm厚度27015.07.0

Fig.1

Schematic diagram of static three-point bending test"

Fig.2

Schematic diagram of three-point bending fatigue test"

Fig.3

Static bending test process curve"

Fig.4

Static bending test results"

Table 2

Mean fatigue life of specimens with different thicknesses"

2 mm厚度试样2 mm加厚试样7 mm试样
应力比应力等级平均寿命应力比应力等级平均寿命应力比应力等级平均寿命
0.596% UTS10 6460.0665% UTS17 5170.0694% UTS27 834
92% UTS14 17963% UTS12 74988% UTS34 242
90% UTS146 04260% UTS201 90182% UTS143 660
0.698% UTS20330.168% UTS18060.198% UTS8942
96% UTS30 45565% UTS14 77094% UTS37 931
94% UTS240 38660% UTS32 31990% UTS69 078

Fig.5

Bending fatigue test results"

Fig.6

Fatigue S-N curve"

Fig.7

Destruction morphology of laminate surface"

Fig.8

Morphology analysis of side deflection failure of laminates"

Fig.9

SEM observation of laminate fatigue failure"

1 王育虔,刘展,杜金强.高应力水平下T700/MTM46复合材料层合板拉-拉疲劳性能研究[J].玻璃钢/复合材料,2019(4):31-36.
Wang Yu-qian, Liu Zhan, Du Jin-qiang. Study on the tension-tension fatigue properties of T700/Mtm46 composite laminates under high stress level[J]. Fiber Reinforced Plastics/Composites, 2019(4): 31-36.
2 Mouritz A P, Gellert E, Burchill P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53(1): 21-42.
3 Dvorak G J. Composite materials: inelastic behavior, damage, fatigue and fracture[J]. International Journal of Solids and Structures, 2000, 37(1/2): 155-170.
4 Belísio A S, Freire Júnior R C S. Comparative study between the PNL method and a MN in modelling fatigue of composite materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(5): 392-400.
5 Song W, Fan W, Liu T, et al. Flexural fatigue properties and failure propagation of 3D stitched composites under 3-point bending loading[J]. International Journal of Fatigue, 2021, 153: 106507.
6 Qi H Y, Wen W D, Sun L W. Fatigue damage accumulation model based on stiffness degradation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12): 1200-1203.
7 D'Amore A, Giorgio M, Grassia L. Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading[J]. International Journal of Fatigue, 2015, 78: 31-37.
8 Li D, Dang M, Jiang L. Fatigue behavior and failure mechanisms of 3D angle-interlock woven composite at room and cryogenic temperatures under bending[J]. Composites Communications, 2021, 23: 100559.
9 Meng M Z, Le H R, Grove S, et al. Moisture effects on the bending fatigue of laminated composites[J]. Composite Structures, 2016, 154: 49-60.
10 叶辉,李清原,闫康康. 变刚度复合材料层合板的力学性能[J]. 吉林大学学报: 工学版, 2020, 50(3): 920-928.
Ye Hui, Li Qing-yuan, Yan Kang-kang. Mechanical properties of variable⁃stiffness carbon fiber composite laminates[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 920-928.
11 Klesnil M, Lukác P. Fatigue of Metallic Materials[M]. Amsterdam: Elsevier, 1992.
12 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002.
13 Yee A F. Modifying Matrix Materials for Tougher Composites[M]. West Conshohocken: ASTM International, 1987.
14 Talreja R. Fatigue of composite materials: damage mechanisms and fatigue-life diagrams[J]. Mathematical and Physical Sciences, 1981, 378: 461-475.
15 Barron V, Buggy M, McKenna N H. Frequency effects on the fatigue behaviour on carbon fiber reinforced polymer laminates[J]. Journal of Materials Science, 2001, 36(7): 1755-1761.
16 Kawai M, Takeuchi H, Taketa I, et al. Effects of temperature and stress ratio on fatigue life of injection molded short carbon fiber-reinforced polyamide composite[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 9-24.
17 Zhang W, Zhou Z, Zheng P, et al. The fatigue damage mesomodel for fiber-reinforced polymer composite lamina[J]. Journal of Reinforced Plastics and Composites, 2014, 33(19): 1783-1793.
18 Kawai M, Yang K, Oh S. Effect of alternating R-ratios loading on fatigue life of woven fabric carbon/epoxy laminates[J]. Journal of Composite Materials, 2015, 49(27): 3387-3405.
19 Mouritz A P. Structural properties of z-pinned carbon-epoxy T-joints in hot-wet environment[J]. Journal of Composite Materials, 2014, 48(23): 2905-2914.
20 王蔓, 李泽成, 白瑞祥. 复合材料格栅加筋板的分层扩展特性[J]. 吉林大学学报: 工学版, 2007, 37(1): 229-233.
Wang Man, Li Ze-cheng, Bai Rui-xiang. Delamination growth characteristics for composite grid stiffened plates[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(1): 229-233.
21 Alam P, Mamalis D, Robert C, et al. The fatigue of carbon fibre reinforced plastics—a review[J]. Composites Part B: Engineering, 2019, 166: 555-579.
[1] Zhi ZHENG,Pei YUAN,Xuan-hui JIN,Si-si WEI,Bo GENG. Experimental on composite flexible anti⁃collision fender of bridge pier [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2581-2590.
[2] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
[3] Zhi ZHENG,Bo GENG,Fu-min WANG,Jun-hong DONG,Si-si WEI. Improvement of protective ability for existing low⁃grade concrete guardrail [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1362-1374.
[4] Wei LI,Hai-sheng SONG,Hao-yu LU,Wen-ku SHI,Qiang WANG,Xiao-jun WANG. Linear identification method of hysteresis characteristic of composite leaf springs [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 829-836.
[5] Lei WANG,Bing-han HUANG,Jia-hui CONG,Li HUI,Song ZHOU,Yong-zhen XU. Effect of ultrasonic impact on fatigue performance of friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2542-2548.
[6] Yu-xuan WEI,Ming ZHANG,Jia LIU,Shuo LIU,Ming-yu LU,Hong-yu WANG. Buckling performance of variable stiffness composite cylindrical shells based on mode imperfections [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 91-100.
[7] Yong-jun QIN,Nan CHEN,Peng-jie LIN,Jiang YU. Double K fracture characteristics of recycled concrete three⁃point bending beam mixed with lithium slag [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2121-2127.
[8] Qing-guang YAN,Zi-xuan FENG,Xiang-ji LI,Ying-wei WANG. Development about three⁃point bending fatigue experiment machine that can test six specimens at same time [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2013-2020.
[9] Jin TONG,Zi-bo GAO,Chao HUO,Zi-yang WANG,Yun-hai MA,Zhi-yong CHANG. Effect of Cu nanoparticles on friction and wear of ultra⁃high molecular weight polyethylene with composites at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 493-500.
[10] Fan YANG,Xu-dong ZHANG,Meng ZHAO,Bo SHE,Jun-kai DENG. Deformation behavior of shape memory alloy-metallic glass matrix composites based on finite element calculations [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 172-180.
[11] Yi LI,Dong-di HUANG,Kai-feng YU,Ji-cai LIANG,Xiao-ling HE,Xi-tong REN. Performance of silica carbon black modified basalt fiber reinforced polyamide 6 composite [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 181-187.
[12] Zhou SHI,Shu-qing KOU. Performance analysis and lightweight design of 36MnVS4 fracturesplitting connecting rod [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1992-2001.
[13] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[14] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[15] YANG Yue, LI Xue, XU Xiao-dan. Microstructure and properties of sintered Ti-B-C-N power [J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!