Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2581-2590.doi: 10.13229/j.cnki.jdxbgxb.20211227

Previous Articles     Next Articles

Experimental on composite flexible anti⁃collision fender of bridge pier

Zhi ZHENG1,2(),Pei YUAN1,Xuan-hui JIN3,Si-si WEI1,Bo GENG1()   

  1. 1.National Key Laboratory of Structural Dynamics of Bridge Engineering,China Merchants Chongqing Communications Technology Research and Design Institute Co. ,Ltd. ,Chongqing 400067,China
    2.School of Civil Engineering,Chongqing University,Chongqing 400045,China
    3.China Academy of Building Research Co. ,Ltd. ,Beijing 100029,China
  • Received:2021-11-16 Online:2023-09-01 Published:2023-10-09
  • Contact: Bo GENG E-mail:zhengzhi@cqu.edu.cn;gengbo01@163.com

Abstract:

Aiming at the problem that the existing protective structure can not achieve multi-objective ship-type flexible protection,a flexible fender which can protect small and medium-sized ships is proposed.The fender can be used with the existing protective structure.To determine the optimal form,the quasi-static compression tests of three different flexible fenders are carried out.And the protective performance of the optimal structural fender is analyzed through full scale impact test and numerical simulation.The results indicate that the failure modes of different specimens are similar under compression test.The outer plate shear failure, matrix cracking and fiber fracture occurred in all specimens.At the end of compression, the springback rate of each specimen was as high as 85%.Specimen 3 with energy dissipation core material is the optimal structure.For the drop weight impact test, the reduction rate of impact force reaches 97%.Fender deformation recovers completely after impact, and fender dissipates energy in the form of elastic energy dissipation.Under barge impact, the fender absorbs 63% of the collision energy and greatly reduces ship damage.In this condition, the fender mainly absorbs the collision energy with the collapse of the energy dissipating core material.

Key words: engineering of communications and transportation system, composite materials, flexible fender, compression test, impact test, numerical simulation

CLC Number: 

  • U417.1

Fig.1

Specimen structure (unit: mm)"

Fig.2

Specimen preparation process"

Fig.3

Full-scale compression test of flexible fender"

Fig.4

Final failure state"

Fig.5

Load-displacement curve"

Fig.6

Full scale impact test of flexible fender"

Fig.7

Collision force comparison for the test"

Fig.8

Bottom displacement comparison at impact point"

Fig.9

Finite element model of collision system"

Table 1

CSC constitutive parameters"

参 数数值
密度ρCSC/(kg·m-32500
剪切模量G/1010 Pa1.166
体积模量K/1010 Pa1.277
三轴压缩面常数α/107 Pa1.471
三轴压缩面线性参数θ0.3016
三轴压缩面非线性常数λ/107 Pa1.051
三轴压缩面指数β/10-8 Pa-11.929
硬化系数NH1
硬化率CH0
扭转面常数α10.7473
扭转面线性参数θ1/10-9 Pa-11.108
扭转面非线性参数λ10.17
扭转面指数β1/10-8 Pa-16.896
三轴延伸面常数α20.66
单轴压应力速率效应参数η0c/10-41.022
单轴拉应力速率效应参数η0t/10-56.32
最大压应力OVERC/107 Pa2.211
三轴延伸面线性参数θ2/10-9 Pa-11.336
三轴延伸面非线性参数λ20.16
三轴延伸面指数β2/10-8 Pa-16.896
帽盖面长宽比R5
帽盖初始位置XD/107 Pa9.129
最大塑性体积压实率W0.05
线性参数D1/10-10 Pa-12.5
二次形参数D2/10-10 Pa-23.492
韧性形状软化参数B300
单轴拉伸断裂能GFT(Pa·m)7213
纯剪应力下的断裂能GFS(Pa·m)72.13
剪-压过渡参数PWRC5
剪-拉过渡参数PWRT1
压缩软化参数PMOD3.5
单轴压应力的速率效应功率NC /10-41.022
单轴拉应力的速率效应功率Nt0.48
最大拉应力OVERT/107 Pa2.211

Table 2

Composite material parameters"

参 数数值
密度ρF/(kg·m-31800
a方向弹性模量Ea/GPa20
b方向弹性模量Eb/GPa20
ab方向剪切模量Gab/GPa4.32
bc方向剪切模量Gbc/GPa4.32
ca方向剪切模量Gca/GPa4.32
a方向拉伸强度Xt460
b方向拉伸强度Yt/MPa460
a方向压缩强度Xc/MPa130
b方向压缩强度Yc/MPa130
剪切强度Sc/MPa70
泊松比μ0.07

Fig.10

Compression constitutive of core material"

Fig.11

Impact force comparison between simulation and test"

Fig.12

Deformation at the impact point of the fender"

Fig.13

Collision process comparison of the fender"

Fig.14

Energy time history of collision system"

Fig.15

Impact force comparison"

Fig.16

Internal energy comparison"

Fig.17

Impact depth comparison"

Fig.18

Damage comparison of bow"

Fig.19

Fender damage(unit:Pa)"

Fig.20

Engineering application of flexible fender"

1 Larsen O D.Ship Collision with Bridges: The Interaction Between Vessel Traffic and Bridge Structures[M]. Switzerland: International Association for Bridge and Structural Engineering, 1993.
2 .公路桥梁抗撞设计规范 [S].
3 王君杰,耿波. 桥梁船撞概率风险评估与措施[M].中国: 人民交通出版社,2010.
4 张锡祥, 王智祥, 巫祖烈, 等. 一种新型FRP桥墩防撞浮箱结构[J].重庆交通大学学报: 自然科学版, 2011, 30(3): 388-393, 510.
Zhang Xi-xiang, Wang Zhi-xiang, Wu Zu-lie,et al. A late model FRP floating pontoon protection structue for bridge piers in the ship collison[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(3): 388-393, 510.
5 Fang Hai, Mao Yi-feng, Liu Wei-qing, et al. Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision[J]. Composite Structures, 2016(158): 187-198.
6 方海, 王健, 祝露, 等. 武汉鹦鹉洲长江大桥中塔墩防船撞装置研究[J]. 桥梁建设, 2020, 50(1): 20-25.
Fang Hai, Wang Jian, Zhu Lu,et al.Study of collision protection devices for central pylon pier of Yingwuzhou Changjiang river bridge in Wuhan[J]. Bridge Construction, 2020, 50(1): 20-25.
7 Wang Li-li, Yang Li-ming, Huang De-jin, et al. An impact dynamics analysis on a new crashworthy device against ship-bridge collision[J]. International Journal of Impact Engineering, 2008, 35(8): 895-904.
8 Wang J J, Song Y C, Wang W,et al. Evaluation of flexible floating anti-collision device subjected to ship impact using finite-element method[J]. Ocean Engineering, 2019, 178: 321-330.
9 Fan Wei, Guo Wei, Sun Yang, et al. Experimental and nu-merical investigations of a novel steel-UHPFRC composite fender for bridge protection in vessel collisions[J]. Ocean Engineering, 2018, 165: 1-21.
10 周凌宇,濮星旭, 卫军. 装配式UHPC防船撞耗能装置的性能[J]. 中南大学学报: 自然科学版, 2019, 50(4): 923-930.
Zhou Ling-yu, Pu Xing-xu, Wei Jun. Precast UHPC protection system for bridge pier against ship collision[J]. Journal of Central South University(Science and Technology), 2019, 50(4): 923-930.
11 李华永, 周凌宇, 王强, 等. 新型装配式钢-UHPC防船撞装置关键参数及其性能研究[J].中南大学学报:自然科学版, 2021, 52(2): 519-528.
Li Hua-yong, Zhou Ling-yu, Wang Qiang, et al. Research on key parameters and performance of new fabricatedsteel-UHPC anti-ship collision device[J].Journal of CentralSouth University(Science and Technology),2021, 52(2): 519-528.
12 LSTC. Keyword User's Manual[M]. California: Livermore Software Technology Corporation, 2006.
13 郑植, 耿波, 袁佩, 等. 桥墩复合材料防船撞装置新型连 接试验研究[J]. 重庆交通大学学报:自然科学版,2021, 40(5): 66-73.
Zheng Zhi, Geng Bo, Yuan Pei, et al. Experimental study on a new connection of composite materials anti-collisiondevice for piers[J]. Journa of Chongqing Jiaotong University (Natural Science), 2021, 40(5): 66-73.
14 Fan W, Yuan W C.Numerical simulation and analytical modeling of pile-supported structures subjected to ship collisions including soil-structure interaction[J]. Ocean Engineering, 2014, 91(15): 11-27.
15 Liu B, Fan W, Guo W,et al. Experimental investigate on and improved FE modeling of axially-loaded circular RC columns under lateral impact loading[J]. Engineering Structures, 2017, 152(1): 619-642.
16 Xie R, Fan W, Liu B,et al.Dynamic behavior and vulnerability analysis of bridge columns with different cross-sectional shapes under rockfall impacts[J]. Structures,2020, 26:471-486.
17 Zhu L, Liu W, Fang H, et al. Design and simulate on of innovative foam-filled lattice composite bumper system for bridge protection in ship collisions[J]. Composites Part B: Engineering, 2019, 157: 24-35.
18 Wang J J, Song Y C, Wang W,et al.Evaluation of composite crashworthy device for pier protection against barge impact[J]. Ocean Engineering,2018, 169: 144-158.
[1] Guo-zhu CHENG,Lin SHENG,Hao ZHAO,Tian-jun FENG. Exclusive phase setting condition of signalized intersection based on risk analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1962-1969.
[2] Yong-ming HE,Shi-sheng CHEN,Jia FENG,Ya-nan WAN. Superhighway virtual track system based on high precision map [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2016-2028.
[3] Chun-li WU,Shi-ming HUANG,Kui LI,Zheng-wei GU,Xiao-ming HUANG,Bing-tao ZHANG,Run-chao YANG. Analysis of pier action effect under flood based on numerical simulation and statistical analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1612-1620.
[4] Zheng-wei GU,Pan ZHANG,Dong-ye LYU,Chun-li WU,Zhong YANG,Guo-jin TAN,Xiao-ming HUANG. Earthquake⁃induced residual displacement analysis of simply supported beam bridge based on numerical simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1711-1718.
[5] Feng WANG,Shuang-rui LIU,Jia-ying WANG,Jia-ling SONG,Jun WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Size and shape effects of wind drag coefficients for porous structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1677-1685.
[6] Zhi-jia XUE,Zhao-yang WANG,Jiu-peng ZHANG,Chang-gen YAN,Zi-kai XU,Ying-li ZHANG,Xiao-ming Huang,Tao Ma. Toughness analysis and improvement of road structure under action of debris flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1773-1781.
[7] Hai-bin WEI,Shuan-ye HAN,Hai-peng BI,Qiong-hui LIU,Zi-peng MA. Intelligent sensing road active ice and snow removal system and experimental technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1411-1417.
[8] Jing-fu JIN,Xin-ju DONG,Zhi-cheng JIA,Kang WANG,Lian-bin HE,Meng ZOU,Ying-chun QI. Optimization of the tread plate-spring structure of flexible metal wheel with plate-spring [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 964-972.
[9] Rong-han YAO,Wen-tao XU,Wei-wei GUO. Drivers' takeover behavior and intention recognition based on factor and long short⁃term memory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 758-771.
[10] Xue XIAO,Ke-ping LI,Bo PENG,Man-wei CHANG. Integrated lane⁃changing model of decision making and motion planning for autonomous vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 746-757.
[11] Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404.
[12] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[13] Jing WANG,Feng WAN,Chun-jiao DONG,Chun-fu SHAO. Modelling on catchment area and attraction intensity of urban rail transit stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 439-447.
[14] Xiao-hong LU,Jin-hui QIAO,Yu ZHOU,Chong MA,Guo-chuan SUI,Zhuo SUN. Research progress of temperature field in friction stir welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 1-17.
[15] Song FANG,Jian-xiao MA,Gen LI,Ling-hong SHEN,Chu-bo XU. Traffic risk analysis of moving work zone on right lane of city expressway [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1786-1791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .